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Experiences of ictal OP-MEG

Electroencephalography (EEG) is the gold standard investigation for 
epilepsy management. However, the ability of scalp EEG to detect and 
accurately source localise mesial temporal epileptiform activity remains 
controversial (Meckes-Ferber et al., 2004). Magnetoencephalography 
(MEG) is a non-invasive functional imaging modality similar to EEG. The 
localisation of MEG signals is less dependent on the anatomical model 
than EEG, and so can potentially be more accurate. Resecting the 
epileptogenic focus identified with MEG is a strong predictor of long- 
term seizure freedom post-surgery (Rampp et al., 2019). However, 
MEG has traditionally been limited by the cryogen required for the 
sensors, resulting in a large fixed system, meaning that patient move
ment is highly restricted and limiting compliance. Alternative sensors 
called optically pumped magnetometers (OPMs) can overcome some 
limitations of traditional MEG, allowing a system with movement 
tolerance more comparable to scalp EEG. OPM based MEG (OP-MEG) 
has been shown to increase the observed SNR of interictal epileptiform 
discharges (IEDs) in school-aged children by comparison with tradi
tional MEG (Feys et al., 2022), and to successfully record interictal 
epileptiform activity from the mesial temporal lobe (Feys et al., 2025). 
While movement leads to interference in OP-MEG, the technique is 
considerably more motion tolerant than cryogenic MEG (Boto et al., 
2018) and so may be more appropriate for such ictal recordings. Here we 
add to existing literature on ictal recordings in OP-MEG (Feys et al., 
2023; Hillebrand et al., 2023) by demonstrating the ability to record 
seizures with varying degrees of movement from two epilepsy patients.

Ictal events were observed from two male patients. Ethical approval 
was given by the Essex Research Ethics Committee in the UK (REC 
Reference 18/EE/0220) and informed consent obtained. Demographics 
and clinical information can be found in Supplemental Table 1. Both 
patients had routine EEGs within normal limits, therefore necessitating 
prolonged recording. OPM data collection was performed within a 
Magnetically Shielded Room at UCL (Magnetic Shields Limited). 42 and 
38 (for patients 1 and 2 respectively) zero-field OPMs (Gen-2.0 QZFM, 
QuSpin Inc.) were placed on the scalp in a bespoke 3D-printed scanner- 
cast, designed from the patient’s MRI. Head position and rotation were 
recorded with 6 OptiTrack Flex 13 cameras (Natural Point Inc.). Each 
patient sat on a beanbag in the centre of the room with their head un
constrained for approximately 1 hour, monitored by a clinician seated in 
the room. During the ictal recordings, patient 1 was performing a verb 
generation task, while patient 2 (who has musicogenic epilepsy) was 
listening to music known to activate seizures.

Analysis was performed in SPM (https://github.com/spm/spm). Six 
5th order Butterworth filters were applied bidirectionally to the OPM 
data: band-stop filters at 50 Hz, 100 Hz, 150 Hz and 120 Hz to remove 
line noise and interference from the OptiTrack cameras, a low-pass filter 
at 130 Hz and high-pass at 3 Hz. Homogeneous Field Correction 
(Tierney et al., 2021) was applied to minimise environmental interfer
ence. The ictal activity was localised using an LCMV Beamformer with 
the Nolte single shell forward model with the inner skull surface, 
segmented from the participant’s MRI, and a 5 mm grid source space. 
For patient 2, this grid was extended to 5 cm outside of the scalp surface 
to include facial muscle locations as possible sources of the observed 
data, as the seizure involved facial automatism. For patient 1, the data 
covariance was estimated from a 10-min resting state recording to avoid 
biasing the sources to language areas, while the entire dataset recorded 
while the participant listened to music (10 min 36 s) was used for patient 
2.

Patient 1 experienced a focal impaired awareness seizure (Fig. 1. A,B 
and Supplemental Fig. 1). During the seizure, there is an observed in
crease in oscillatory activity within the 13–30 Hz range, which localised 
to the left temporal lobe, consistent with the previous clinical assess
ment and MRI findings. Patient 2 indicated the beginning of the clinical 
seizure when experiencing an aura (time = 0 s in Fig. 1 C). During the 
seizure, the patient exhibited lip smacking and the urge to turn their 
head to the left, suggesting a right anterior quadrant seizure onset. Due 
to this head movement, large, low frequency signals are observed in the 
OPM data. Therefore, we have focussed on observed increased high 
frequency (60–130 Hz) power, which is less likely to be induced by 
movement. This localised bilaterally (right > left). The peak increase in 
power in the right hemisphere is adjacent to the inferior frontal gyrus 
(pars opercularis) (MNI coordinates: (55.5, 20.1, 0.2)). The maximum in 
the left hemisphere within the inner skull surface was found adjacent to 
the inferior frontal gyrus (pars triangularis) (MNI coordinates (− 55.3, 
19.9, − 5.5)). The peaks in both hemispheres are adjacent to the 
respective superior temporal pole and gyrus.

Ictal OP-MEG from patient 1 shows clear activation localising to the 
expected region. With patient 2, we have examined observed increases 
in high frequency activity during this seizure. These localised close to 
the superior temporal gyri, often associated with musicogenic seizures 
(Stern, 2015), and the inferior frontal gyri, areas which have been 
associated with perceiving and enjoying music (Zatorre and Salimpoor, 
2013). We cannot absolutely rule out that facial muscle artefacts or eye 
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Fig. 1. A) Ictal activity observed from patient 1 at the sensor-level. The seizure onset was at 0 s. The time–frequency spectrum is shown averaged over all channels, 
baseline corrected by the average power in a rest recording, alongside the topography of the average change in power within the window of interest (0–4 s, 13–30 Hz) 
(showing only the OPM channels radial to the head) and the recorded magnetic field over time for 3 radial channels: the two with the highest and the one with the 
median average power change within that window. There is a visible increase in oscillatory activity between 0–4 s. There may also be an IED, as is often observed at 
the end of a seizure, at 8 s. B) LCMV beamformer localisation of this 13–30 Hz power increase, contrasting the 0–3 s window with the 4–7 s window. Thresholded at 
80% of the maximum power change. The maximum power increase lies in the left temporal lobe and is marked by a black cross. The MRI abnormality is marked in 
green. C) Ictal activity observed with patient 2, shown at the sensor-level. Patient reported commencement of aura at 0 s. Equivalent of (A) but with the addition of 
participant head position and rotation. 4–6 s; 60–130 Hz was chosen as the window of interest based on the time–frequency spectrum. D) LCMV beamformer 
localisation of the increase in power in 60 Hz to 130 Hz frequency range between 4–6 s by comparison with − 7 – − 5 s, thresholded at 80% of the maximum power 
increase. The black cross shows the peak power location. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)
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movements, could be the cause of these high frequency signals. How
ever, despite including facial muscles as possible sources of activity, the 
peak of the activity was still observed within the brain. In future, this is 
likely to be less of a concern as there have recently been a number of 
developments in post-hoc software based interference correction for OP- 
MEG.  

Supplemental Fig. 1. LCMV beamformer for different time windows 
during the event. As in Fig. 1B, the MRI abnormality is shown in green.

Patient 
No.

Years after 
epilepsy onset:

Findings 
from clinical 
MRI

Findings from 
clinical EEG 
telemetry

Ictal OP-MEG 
localisation

OP- 
MEG

Clinical 
EEG

1 19 19 Left temporal 
lobe grey 
matter 
heterotopia

Left temporal 
interictal; left 
neocortical 
ictal

Left parietal 
and temporal 
lobe, peak 20.2 
mm from 
lesion 
boundary

2 13 9 Normal Right 
temporal

Inferior frontal 
gyrus (R>L)

Supplemental Table 1. Patient demographics and clinical 
characteristics.
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