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Letter to the Editor
Experiences of ictal OP-MEG

Electroencephalography (EEG) is the gold standard investigation for
epilepsy management. However, the ability of scalp EEG to detect and
accurately source localise mesial temporal epileptiform activity remains
controversial (Meckes-Ferber et al., 2004). Magnetoencephalography
(MEG) is a non-invasive functional imaging modality similar to EEG. The
localisation of MEG signals is less dependent on the anatomical model
than EEG, and so can potentially be more accurate. Resecting the
epileptogenic focus identified with MEG is a strong predictor of long-
term seizure freedom post-surgery (Rampp et al., 2019). However,
MEG has traditionally been limited by the cryogen required for the
sensors, resulting in a large fixed system, meaning that patient move-
ment is highly restricted and limiting compliance. Alternative sensors
called optically pumped magnetometers (OPMs) can overcome some
limitations of traditional MEG, allowing a system with movement
tolerance more comparable to scalp EEG. OPM based MEG (OP-MEG)
has been shown to increase the observed SNR of interictal epileptiform
discharges (IEDs) in school-aged children by comparison with tradi-
tional MEG (Feys et al., 2022), and to successfully record interictal
epileptiform activity from the mesial temporal lobe (Feys et al., 2025).
While movement leads to interference in OP-MEG, the technique is
considerably more motion tolerant than cryogenic MEG (Boto et al.,
2018) and so may be more appropriate for such ictal recordings. Here we
add to existing literature on ictal recordings in OP-MEG (Feys et al.,
2023; Hillebrand et al., 2023) by demonstrating the ability to record
seizures with varying degrees of movement from two epilepsy patients.

Ictal events were observed from two male patients. Ethical approval
was given by the Essex Research Ethics Committee in the UK (REC
Reference 18/EE/0220) and informed consent obtained. Demographics
and clinical information can be found in Supplemental Table 1. Both
patients had routine EEGs within normal limits, therefore necessitating
prolonged recording. OPM data collection was performed within a
Magnetically Shielded Room at UCL (Magnetic Shields Limited). 42 and
38 (for patients 1 and 2 respectively) zero-field OPMs (Gen-2.0 QZFM,
QuSpin Inc.) were placed on the scalp in a bespoke 3D-printed scanner-
cast, designed from the patient’s MRI. Head position and rotation were
recorded with 6 OptiTrack Flex 13 cameras (Natural Point Inc.). Each
patient sat on a beanbag in the centre of the room with their head un-
constrained for approximately 1 hour, monitored by a clinician seated in
the room. During the ictal recordings, patient 1 was performing a verb
generation task, while patient 2 (who has musicogenic epilepsy) was
listening to music known to activate seizures.
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Analysis was performed in SPM (https://github.com/spm/spm). Six
5th order Butterworth filters were applied bidirectionally to the OPM
data: band-stop filters at 50 Hz, 100 Hz, 150 Hz and 120 Hz to remove
line noise and interference from the OptiTrack cameras, a low-pass filter
at 130 Hz and high-pass at 3 Hz. Homogeneous Field Correction
(Tierney et al., 2021) was applied to minimise environmental interfer-
ence. The ictal activity was localised using an LCMV Beamformer with
the Nolte single shell forward model with the inner skull surface,
segmented from the participant’s MRI, and a 5 mm grid source space.
For patient 2, this grid was extended to 5 cm outside of the scalp surface
to include facial muscle locations as possible sources of the observed
data, as the seizure involved facial automatism. For patient 1, the data
covariance was estimated from a 10-min resting state recording to avoid
biasing the sources to language areas, while the entire dataset recorded
while the participant listened to music (10 min 36 s) was used for patient
2.

Patient 1 experienced a focal impaired awareness seizure (Fig. 1. A,B
and Supplemental Fig. 1). During the seizure, there is an observed in-
crease in oscillatory activity within the 13-30 Hz range, which localised
to the left temporal lobe, consistent with the previous clinical assess-
ment and MRI findings. Patient 2 indicated the beginning of the clinical
seizure when experiencing an aura (time = 0 s in Fig. 1 C). During the
seizure, the patient exhibited lip smacking and the urge to turn their
head to the left, suggesting a right anterior quadrant seizure onset. Due
to this head movement, large, low frequency signals are observed in the
OPM data. Therefore, we have focussed on observed increased high
frequency (60-130 Hz) power, which is less likely to be induced by
movement. This localised bilaterally (right > left). The peak increase in
power in the right hemisphere is adjacent to the inferior frontal gyrus
(pars opercularis) (MNI coordinates: (55.5, 20.1, 0.2)). The maximum in
the left hemisphere within the inner skull surface was found adjacent to
the inferior frontal gyrus (pars triangularis) (MNI coordinates (—55.3,
19.9, —5.5)). The peaks in both hemispheres are adjacent to the
respective superior temporal pole and gyrus.

Ictal OP-MEG from patient 1 shows clear activation localising to the
expected region. With patient 2, we have examined observed increases
in high frequency activity during this seizure. These localised close to
the superior temporal gyri, often associated with musicogenic seizures
(Stern, 2015), and the inferior frontal gyri, areas which have been
associated with perceiving and enjoying music (Zatorre and Salimpoor,
2013). We cannot absolutely rule out that facial muscle artefacts or eye
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Fig. 1. A) Ictal activity observed from patient 1 at the sensor-level. The seizure onset was at 0 s. The time-frequency spectrum is shown averaged over all channels,
baseline corrected by the average power in a rest recording, alongside the topography of the average change in power within the window of interest (0-4 s, 13-30 Hz)
(showing only the OPM channels radial to the head) and the recorded magnetic field over time for 3 radial channels: the two with the highest and the one with the
median average power change within that window. There is a visible increase in oscillatory activity between 0-4 s. There may also be an IED, as is often observed at
the end of a seizure, at 8 s. B) LCMV beamformer localisation of this 13-30 Hz power increase, contrasting the 0-3 s window with the 4-7 s window. Thresholded at
80% of the maximum power change. The maximum power increase lies in the left temporal lobe and is marked by a black cross. The MRI abnormality is marked in
green. C) Ictal activity observed with patient 2, shown at the sensor-level. Patient reported commencement of aura at 0 s. Equivalent of (A) but with the addition of
participant head position and rotation. 4-6 s; 60-130 Hz was chosen as the window of interest based on the time—frequency spectrum. D) LCMV beamformer
localisation of the increase in power in 60 Hz to 130 Hz frequency range between 4-6 s by comparison with —7 — —5 s, thresholded at 80% of the maximum power
increase. The black cross shows the peak power location. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
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movements, could be the cause of these high frequency signals. How-
ever, despite including facial muscles as possible sources of activity, the
peak of the activity was still observed within the brain. In future, this is
likely to be less of a concern as there have recently been a number of
developments in post-hoc software based interference correction for OP-
MEG.

Supplemental Fig. 1. LCMV beamformer for different time windows
during the event. As in Fig. 1B, the MRI abnormality is shown in green.

Patient Years after Findings Findings from  Ictal OP-MEG
No. epilepsy onset: from clinical clinical EEG localisation
— MRI telemetry
OP- Clinical
MEG EEG
1 19 19 Left temporal ~ Left temporal Left parietal
lobe grey interictal; left ~ and temporal
matter neocortical lobe, peak 20.2
heterotopia ictal mm from
lesion
boundary
2 13 9 Normal Right Inferior frontal
temporal gyrus (R>L)
Supplemental Table 1. Patient demographics and clinical
characteristics.
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