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ABSTRACT
Movement-related theta oscillations in rodent hippocampus coordinate ‘forward sweeps’ of location-
specific neural activity that could be used to evaluate spatial trajectories online. This raises the
possibility that increases in human hippocampal theta power accompany the evaluation of upcom-
ing spatial choices. To test this hypothesis, we measured neural oscillations during a spatial planning
task that closely resembles a perceptual decision-making paradigm. In this task, participants searched
visually for the shortest path between a start and goal location in novel mazes that contained
multiple choice points, and were subsequently asked to make a spatial decision at one of those
choice points. We observed ~4–8 Hz hippocampal/medial temporal lobe theta power increases
specific to sequential planning that were negatively correlated with subsequent decision speed,
where decision speed was inversely correlated with choice accuracy. These results implicate the
hippocampal theta rhythm in decision tree search during planning in novel environments.
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Introduction

Recent evidence has linked the hippocampus with plan-
ning in rodents (Miller, Botvinick, & Brody, 2017) and
humans (Kaplan et al., 2017a). Moreover, changes in hip-
pocampal theta power (approx. 4–8Hz in humans) have
been observed during memory-guided decision-making
in well-learned environments in both species (Belchior,
Lopes-Dos-Santos, Tort, & Ribeiro, 2014; Guitart-Masip
et al., 2013; Schmidt et al., 2013). However, it remains
unclear whether changes in hippocampal theta power
are associated with planning in novel environments.
Notably, rodent type I hippocampal theta oscillations
generated by exploratory movement (Vanderwolf, 1969)
are linked to sweeps of place cell activity produced by
hippocampal theta phase precession (O’Keefe & Recce,
1993). It has been hypothesized that these ‘theta sweeps’
could serve as a mechanism to plan trajectories online
(Johnson & Redish, 2007). This raises the possibility that
similar increases in human hippocampal theta power are
induced by the planning of forward trajectories.

To investigate the role of the hippocampal theta
rhythm in online spatial planning (i.e., the search of

decision trees), we created a spatial task that required
little to no learning, in which participants could draw
upon their experience in the physical world (Kaplan
et al., 2017a). We tested human participants on this
task using noninvasive whole-head magnetoencepha-
lography (MEG). Participants were instructed to
visually search for the shortest path between a start
and goal in novel mazes that afforded multiple paths.
Participants were then asked which direction they
would take from one of two choice points along the
shortest path (Figure 1).

Crucially, the mazes were designed to induce forward
planning in terms of a two-level tree search, where partici-
pants needed to maintain the decisions they made at each
choice point. At both choice points, there was a small,
medium, or large path length difference – creating a total
of (3x3) nine conditions allowing us to test the effect of
planning demands at each choice point depth (i.e., initial
or second). In parallel, our task also contained a non-
sequential control condition, where participants were pre-
sented with mazes containing only one choice point
(Figure 1(d)). In either case, we associate a smaller path
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difference with greater ambiguity and processing
demands. Importantly, in any trial, participants were only
prompted to make one choice after seeing the full maze;
however, until the choice point was highlighted, they did
not know which decision would be probed in sequential
planning trials (Figure 1). After planning their route, parti-
cipantswere asked to choose – at a specified choice point –
the direction of the shortest path to the goal location
(Figure 1). This provided a measure (reaction time, RT)
with which to quantify their (subjective) uncertainty to
complement the (objective) difference in path lengths.

This design allowed us to ask whether hippocampal theta
power relates to successful sequential spatial planning.

Methods

Participants

MEG
Twenty-four participants (14 female: mean age 23.5 yrs;
SD of 3.49 years) gave written consent and were com-
pensated for performing the experimental task, as

Figure 1. Task. A. Each trial (i.e., visually presented maze) began with an inter-trial interval (ITI) of 1.5s. Next, during a 3.25s planning
phase, participants had to infer the shortest path from a start point (red square) to a goal location (green square) and remember the
chosen direction for each choice point along the shortest path. A choice point was subsequently highlighted (choice highlight) for
250ms. This was either the initial (i.e. first) or second (i.e. subsequent) choice point along the shortest path. Participants were then
asked which direction (e.g., left or forward) they would take at that choice point during a choice period that was cued by a first-person
viewpoint of the highlighted location. Participants had a maximum of 1.5s to make their choice using a button box. B. Overhead view
(not shown during the experiment) of the maze in A, indicating which path lengths contribute to initial and second choice point
demands (black line represents shortest path). C. Left: Example sequential planning trial with a small path length difference
(demanding) at the red square/initial choice point and large (less demanding) path length difference at the second choice point.
Right: Example trial with a large (less demanding) path length difference at the red square/initial choice point and small (demanding)
path length difference at the second choice point. D. Left: Example non-sequential (control) trial with a small path length difference
(demanding). Right: Example non-sequential (control) trial with a large path length difference (less demanding).

2 R. KAPLAN ET AL.



approved by the local research ethics committee at
University College London in accordance with
Declaration of Helsinki protocols. All participants had
normal or corrected-to-normal vision and reported to
be in good health with no prior history of neurological
disease. Due to technical difficulties, two participants
were removed from our sample, leaving twenty-two
participants in the behavioral and MEG analyses pre-
sented here.

iEEG
Pre-surgical EEG recordings from 2 patients with phar-
macoresistant focal-onset seizures and hippocampal
depth electrodes gave written consent, as approved
by the local ethics committee at Hospital del Mar and
in accordance with Declaration of Helsinki protocols.
One patient was removed from analyses, because of
visual difficulties due to an inferior occipital lesion,
leaving one patient with normal vision presented in
the current analysis. A summary of the patient’s char-
acteristics is given in Table 1.

Experimental design

During MEG scanning, stimuli were presented via a digital
LCD projector on a screen (height, 32 cm; width, 42 cm;
distance from participant, ~70 cm) inside a magnetically
shielded room using the Cogent (http://www.vislab.ucl.
ac.uk/cogent.php) toolbox running in MATLAB
(Mathworks, Natick, MA, USA). Instead of a projector, the
iEEG patient completed the task on a laptop in their
hospital bed. There were no other differences with the
MEG experiment unless mentioned otherwise. Over the
course of 220 trials, participants viewed 220 different
mazes from a slightly tilted (overhead) viewpoint and
later chose from first-person viewpoints within mazes
generated using Blender (http://www.blender.org). All
mazes had a starting location (a red square) toward the
bottom of the maze and a goal location (a green square)
further into themaze (Kaplan et al., 2017a). Mazes differed
by hierarchical depth (number of paths to a goal location):
there were 110 mazes with four possible routes (sequen-
tial mazes) and a further 110 non-sequential control
mazes with two possible routes (control mazes). In the

scanner, participants were first presented with pictures of
novel mazes (Figure 1) of varying difficulty (from an over-
head viewpoint) and then asked to determine the short-
est path from a starting location (a red square) at the
bottom of the screen to the goal location (a green
square). The overhead view appeared on the screen for
3.25 s, after which a location (choice point) along the path
was highlighted briefly for 250 ms with an orange circle.
The choice point location could either be the initial choice
point or a second (subsequent) choice point. Crucially,
participants would only have to make a decision about
one choice point for each trial.

At either choice point, it was necessary to choose
between two possible directions, which could be left,
forward, or right, with an additional option to select
equal, if both routes were the same distance.
The second choice point always fell on the optimal
path from the starting location to the goal(Kaplan
et al., 2017a). After the choice point was highlighted,
a ‘zoomed in’ viewpoint of this location (always one
square back and facing the same direction as the over-
head viewpoint) was presented. Participants had less
than 1.5s (2s for the iEEG patient) to decide whether to
go left, forward, right, or decide that all directions were
equidistant to the goal. If no button press was made
within the allotted duration, the trial counted as an
incorrect trial and the experiment moved on to the
1.5s inter-trial interval (ITI) phase. Participants repeated
this trial sequence 110 times per session, for a total of
two sessions. Sessions lasted approximately 10–15 min.

All participants completed a brief practice session
consisting of 40 mazes/trials before the experiment (on
a laptop outside of the scanner). Sequential mazes con-
tained two branch/choice points between routes further
in the maze, and the path lengths from the initial choice
point to either of the second choice points were always
equal. In sequential mazes, we used a 3 × 3 factorial
design. Path length differences were split between 2
(small difference), 4 (medium difference), or 6 (large
difference) squares (for an example, see square tiles in
the mazes presented in Figure 1) for the two paths at the
starting location and a path length difference of 2, 4, or 6
squares at the optimal choice point in the maze. There
was one catch trial for sequential and control mazes in

Table 1. Patient information.
Age/
Sex Handedness

Seizure
Onset/Freq Education Epileptic Focus Drugs & Dosage First-language

23M R (but used
L due to IV)

16 yo (1 seizure per week and
now seizure free)

Secondary R Temporobasal
(temporal pole)

Eslicarbazepinole 1000 mg/per day;
leviteracetam 1500/2x day;
Perampanel 8 mg/per day

Spanish

All diagnostic and surgical procedures were approved by the clinical ethics committee of Hospital del Mar in accordance with the principles expressed by the
Declaration of Helsinki. Electrode locations were determined solely by clinical criteria, ascertained by visual inspection of post-implantation MRI scans using
Slicer 4 (Fedorov et al., 2012; www.slicer.org) and verified by an fMRI expert (R.Ka.). The Patient was seizure free for at least 24 h before participation and
underwent an extensive neuropsychological evaluation to check for any cognitive impairments.

COGNITIVE NEUROSCIENCE 3

http://www.vislab.ucl.ac.uk/cogent.php
http://www.vislab.ucl.ac.uk/cogent.php
http://www.blender.org
http://www.slicer.org


each session, each containing all equal path lengths
(path length differences of 0). In sum, sequential maze
trials could be 2, 2; 2, 4; 2, 6; 4, 2; 4, 4; 4, 6; 6, 2; 6, 4; 6, 6;
(e.g. 4, 2 would have a medium path length difference of
4 at the starting location, whereas the second choice
point would have a small path length difference of 2).
Half of the trials in the experiment were control/non-
sequential mazes, which only contained one choice
point at the red starting square. For these mazes, path
length differences were split between 2, 4, and 6, with
one catch trial per session having equal path lengths.

iEEG recordings and artifact detection

All iEEG recordings were performed using a standard
clinical EEG system (XLTEK, subsidiary of Natus Medical,
Pleasanton, CA) with a 500 Hz sampling rate.
A unilateral implantation in the right hemisphere was
performed accordingly, using 15 intracerebral electro-
des (Dixi Médical, Besançon, France; diameter: 0.8 mm;
5 to 15 contacts, 2 mm long, 1.5 mm apart) that were
stereotactically inserted using robotic guidance (ROSA,
Medtech Surgical, New York, NY).

Intracranial EEG signals were processed in amonopolar
referencing montage because it has been found to be
more sensitive than other montages in capturing hippo-
campal electrophysiological signals (Vila-Vidal et al.,
2019). Still, it is important to note that monopolar referen-
cing yields data that can be contaminated by volume
conduction and remote field effects. All recordings were
subjected to a zero phase, 400th order finite impulse
response (FIR) band-pass filter to focus on our frequency
range of interest (0.5–48 Hz) and remove the effect of
alternating current. Audio triggers produced by the sti-
mulus presentation laptopwere recorded on themonitor-
ing system, which allowed for the EEG to be aligned with
trial onset information sampled at 25 Hz.

Although the patient was consistently engaged by
the task, all trials that included interictal spikes (IIS) or
other artifacts, either within the period of interest or
during the padding windows, were excluded from all
analyses presented here after manual inspection (4 trials
removed). A 500 ms padding window was used at either
end of planning period time series to minimize edge
effects in subsequent analyses.

iEEG time-frequency analysis

Estimates of dynamic oscillatory power during periods of
interest were obtained by convolving the EEG signal
with a Morlet wavelet and squaring the absolute value
of the convolved signal. The wavelet transform was pre-
ferred to the Fourier transform here since the analysis

was focused on preserving temporal information about
when power changes happened, which is in contrast
with MEG analyses that were more focused on source
localization. To perform baseline correction on time–
frequency data for display purposes, power values
were averaged across ITI periods for each frequency
band, and those average values were subtracted from
the power values at each time point in the planning
period. To assess correlations among oscillatory power
in each trial with RT, oscillatory power at each time point
and frequency of interest was correlated with trial-by-
trial RTs. These values were then averaged across the
deepest contacts in both anterior (x:34, y:-13, z:-23) and
posterior (x:33, y:-31, z:-9) right hippocampal electrodes
to provide a single value at each time and frequency
point for the patient.

MEG recording and preprocessing

Data were recorded continuously from 274 axial gradi-
ometers using a CTF Omega whole-head system at
a sampling rate of 600 Hz in third-order gradient config-
uration. Participants were also fitted with four electrocu-
logram (EOG) electrodes to measure vertical and
horizontal eye movements. MEG data analyses made
use of custom made Matlab scripts, SPM8 &12
(Wellcome Center for Human Neuroimaging, London;
Litvak et al., 2011), and Fieldtrip (Oostenveld, Fries,
Maris, & Schoffelen, 2011). For preprocessing, MEG data
was epoched into 2s baseline periods prior to the plan-
ning phase for each of the nine sequential planning con-
ditions of interest and the three non-sequential planning
control conditions. Trials were visually inspected, with any
trial featuring headmovement or muscular artifacts being
removed (mean trials removed per participant = 3.45).

MEG source reconstruction

The linearly constrained minimum variance (LCMV) sca-
lar beamformer spatial filter algorithm was used to gen-
erate source activity maps in a 10-mm grid (Barnes &
Hillebrand, 2003). Coregistration to MNI coordinates was
based on nasion, left and right preauricular fiducial
points. The forward model was derived from a single-
shell model (Nolte, 2003) fit to the inner skull surface of
the inverse normalized SPM template. The beamformer
source reconstruction algorithm consists of two stages:
first, based on the data covariance and lead field struc-
ture, weights are calculated which linearly map sensor
data to each source location; and second, a summary
statistic based on the mean oscillatory power between
experimental conditions is calculated for each voxel.
Focusing on the specifics of power estimation, sensor
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data have a Hann window applied and are then subject
to a Fast Fourier transform (FFT) to estimate power at
each frequency across the whole signal. FFT data from
each sensor is then multiplied by the beamformer
weights to estimate power in each source.

We wished to control for any possible influence of
EOG muscular artifacts during the planning period on
estimates of oscillatory power and therefore computed
the variance of two simultaneously recorded EOG signals
across each planning phase and removed any covar-
iance between these EOG variance values and oscillatory
power measurements across voxels by linear regression
(Kaplan et al., 2017c, 2014). This left ‘residual’ oscillatory
power measurements for all trials whose variance could
not be accounted for by changes in the EOG signal
between trials, and these residual values were used as
summary images for subsequent analyses. RT was
included as an additional nuisance regressor for the
theta power source analysis investigating the effect of
path length differences at different choice points.
Including RT as a nuisance regressor specifically for this
analysis helped determine whether there were any resi-
dual hippocampal theta power effects related to choice
point demands during the planning period.

MEG sensor-level analyses

For visualization purposes, scalp power plots were esti-
mated by averaging Morlet wavelet transforms over the
entire 3.25s planning period and 4–8Hz frequency win-
dow of interest. The sensor-level analysis followed the
same EOG variance nuisance regression procedure as
source analyses. Subsequently, the linear relationship
between trial-by-trial RT and residual 4–8Hz planning
period oscillatory power values at each sensor was cal-
culated for every participant.

MEG statistical analyses

There were two main periods of interest, the 1.5s ITI and
3.25s planning phase. For each of the 9 sequential plan-
ning regressors of interest (i.e., maze with a small, med-
ium, or large path length at the second and initial
points), we constructed parametric regressors based on
RT and accuracy (i.e. whether the response was correct).
Inferences about these effects were based upon t- and
F-tests using the standard summary statistic approach
for second level random effects analysis.

A peak voxel significance threshold of p < 0.05 FWE
corrected for multiple comparisons was used for MEG
source analyses. Given the previously hypothesized role
of the hippocampus theta rhythm in planning, we report
whether peak-voxels in that frequency band and these

regions survive small-volume correction for multiple
comparisons (p < 0.05) based on a bilateral ROI of the
hippocampus (mask created using Neurosynth, Yarkoni,
Poldrack, Nichols, Van Essen, & Wager, 2011). All images
are displayed at the p < 0.001 uncorrected threshold for
illustrative purposes. Additionally, only sources contain-
ing a significant peak voxel are displayed.

Post hoc statistical analyses were conducted using
10-mm radius spheres around the respective peak
voxel specified in the GLM analysis. This allowed us to
compare the effects of different regressors of interest,
while ensuring we did not make any biased inferences in
our post hoc analyses.

Results

Behavioral performance

Twenty-two participants in the MEG study made correct
choices on 87.9 ± 6.13% of sequential planning trials
(mean ± SD; non-sequential control trials: 86.4 ± 4.95%),
with an average reaction time (RT) of 469 ± 99ms (non-
sequential control trials: 363 ± 112ms). Paired t-tests
showed that RTs were significantly higher for sequential
than non-sequential (i.e. control) trials (t(21) = 9.55; p <
.001), without any difference in accuracy (t(21) = 1.42; p =
.171). In addition, RTs were strongly inversely correlated
with accuracy across MEG participants in both sequential
(t(21) = -5.72; p < 0.001) and non-sequential control trials
(t(21) = -5.72; p < .001). After accounting for planning
demands induced by the path length differences at each
choice point (mean path length differences at the two
choice points), RTs were still negatively correlated with
accuracy in both sequential (t(21) = -5.25; p < .001) and
non-sequential control trials (t(21) = -5.14; p < .001). In
other words, participants responded faster when they
made accurate choices. Moreover, these results demon-
strate that RTs directly relate to accurate performance on
the spatial planning task.

We then asked whether accuracy and RT were specifi-
cally influenced by path length differences and choice
point depth, with the aim of disentangling the effects of
first/initial versus second/subsequent choice point
demands on planning accuracy and RT. Using a repeated
measures ANOVA, we looked for an effect of path length
difference and choice point depth on accuracy and RTs in
MEGparticipants.We observed amain effect of path length
difference on both accuracy (F(2,20) = 9.09; p = .002; Figure
2(a)) and RTs (F(2,20) = 5.06;p = .017; Figure 2(b)), driven by
higher accuracy and faster RTs for larger path length differ-
ences; as well as a significant interaction between initial (i.e.
first) and second (i.e. subsequent) choice points and path
length differences on both accuracy (F(4,18) = 11.0;
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p < 0.001) and RTs (F(4,18) = 4.75; p = 0.009). Post-hoc
t-tests revealed that this interaction resulted frommedium
path length differences being significantly less demanding
(i.e. producing higher accuracy and faster RTs) when they
were at the initial, as opposed to the second, choice point
(Accuracy: t(21) = 3.62; p = .002; RT: t(21) = -4.17; p < .001).

MEG analyses

Using MEG source reconstruction, we asked whether
4–8 Hz theta power changes anywhere in the brain
were related to differences in spatial planning. As
a control to ascertain whether effects were specific to
the theta frequency band, we also report power changes
in four other canonical frequency bands (delta/low theta:
1–3 Hz, alpha: 9–12Hz, beta: 13–30Hz, and gamma: 30–
80Hz). Focusing on RTs, we found a significant negative
correlation between 4–8Hz theta power during the
sequential planning phase and subsequent RTs in a left
hippocampal source (x:-36, y:-20, z:-20, t(21) = -4.28;
small volume corrected (SVC) peak-voxel p = .011;
Figure 3(a,b)). Specifically, increased hippocampal theta
power during planning periods preceded faster deci-
sions – an effect that was also visible at the scalp level
(Figure 3(c)). Notably, we did not observe any correlation
between theta power and trial-by-trial choice accuracy
anywhere in the brain, although this may be due to
a relatively small number of errors.

In addition, we found a significant negative correlation
between theta power and RTs in the right ventral temporal
lobe (x:36, y:-42, z:-26; t(21) = -5.92; family wise error (FWE)
corrected peak-voxel p = .012; Fig. S1), which extended into
posterior parahippocampal cortex. We did not observe
a significant positive correlation between 4–8Hz planning

period theta power and subsequent RTs anywhere in the
brain. Elsewhere, we observed 9–12Hz alpha power
changes in the right occipital lobe/cerebellum that nega-
tively correlatedwith RT (x:28, y:-70, z:-22; t(21) = -5.99; FWE
corrected peak-voxel p = .014; Fig. S1). However, we
observed no other significant correlations between oscilla-
tory power and RT in any other brain regions or frequency
band.

To assess whether significant power changes related
specifically to sequential planning, we tested whether
each correlation described above was stronger for
sequential planning trials versus non-sequential/control
trials. Using a 10mm sphere around the respective peak
voxels, we directly compared sequential versus non-
sequential planning correlations with RT and observed
that hippocampal RT theta effects selectively corre-
sponded to sequential planning (t(21) = -2.33; p = .03;
Figure 3(d)). On the other hand, right ventral temporal/
parahippocampal theta (t(21) = -1.38; p = .181; Fig. S1)
and occipital/cerebellar alpha effects did not show any
significant differences(t(21) = -1.74; p = .095; Fig. S1). We
did not observe any significant correlation between
alpha or theta power and RT in any brain region during
non-sequential control trials.

We then asked whether sequential spatial planning
was associated with a general increase in left hippo-
campal theta power. Again, using a 10mm sphere
around the left hippocampal peak, we observed
a significant increase in 4–8Hz hippocampal theta
power in this region during the sequential planning
period versus ITI (t(21) = 3.74; p = .001; Figure 3(e)).
Conducting the same sequential planning versus ITI
analysis in the other areas exhibiting RT effects, we
observed significant increases in both ventral

a b

Figure 2. Behavior A. Accuracy. Left: Significant main effect (p = 0.002) of path length differences (small, medium, and large) on
choice accuracy, collapsed across initial and second choice points. B. Reaction time. Significant main effect (p = 0.017) of path length
differences (small, medium, and large) on reaction times, collapsed across initial and second choice points. All error bars show ± SEM.
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temporal lobe theta (t(21) = 2.79; p = .011) and
occipital alpha (t(21) = 4.44; p < .001) power during
sequential planning (Fig. S1).

Finally, isolating hippocampal theta power changes,
we tested for the effects of processing demands (path
length differences) at initial and second choice points
(e.g., quicker RT for mazes with less demanding initial
choice points). Using a repeated measures ANOVA (path

length difference by choice point depth), we tested
whether the left hippocampal region (exhibiting
a theta power correlation with RT) also showed an effect
of path length differences at initial versus second choice
points related to RT. We did not observe any significant
effect of path length difference by choice point depth in
the left hippocampus (F(4,18) = 1.79; p = .175), or any
other brain region.

a

b c

d e

Figure 3. Reaction time correlation with MEG theta power.
A. Linearly Constrained Minimum Variance (LCMV) beamformer source reconstruction image showing significant 4–8 Hz left hippocampal theta power source
negative correlation with RT (x:-36, y:-20, z:-20) in 22 healthy participants. Images displayed at the statistical threshold of p < 0.001 uncorrected for visualization
purposes. B. Beta value spectrum from 1 to 15 Hz for hippocampal RT theta power effect showing peak negative correlation in the 4–8 Hz theta band.
C. Negative 4–8 Hz theta power correlation with RT shown at the scalp level for 22 healthy participants. D. Data from a 10 mm sphere around left hippocampal
peak voxel from RT contrast showing a significant difference (t(21) = -2.33; p = .03) between sequential and non-sequential planning trials. E. Data from
a 10 mm sphere around left hippocampal peak voxel from RT contrast showing increased theta power (t(21) = 3.74; p = .001) during planning phase versus the
ITI period. All error bars show ± SEM.
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Hippocampal iEEG recordings

Next, to corroborate our source reconstructed MEG effects,
we examined changes in low frequency oscillatory power
during the 3.25s sequential planning period using intracra-
nial electroencephalography (iEEG) recordings from hippo-
campal depth electrodes (Figure 4(a)) of a single high
performing pre-surgical epilepsy patient (95.5% accuracy;
mean RT: 423 ± 123ms). We asked whether iEEG 4–8Hz
hippocampal theta power during sequential planning cor-
related with the patient’s subsequent RT. Paralleling the
MEG data described above, we observed a negative corre-
lation between ~4–8 Hz hippocampal theta power during
the entire 3.25s planning phase and subsequent RT (r = -
0.202; p = .035; Figure 4(b)). This result should be inter-
preted with caution given the relatively small number of
measurements, the presence of an epileptic focus in the
same hemisphere, lack of electrode coverage over ade-
quate control regions, and presence of similar correlations
at other frequencies. Overall, we observed hippocampal
theta (along with alpha and beta) power correlations with
RT during the sequential planning period that paralleled
the theta effect we observed in the MEG dataset.

General discussion

We examined how the human hippocampal theta
rhythm relates to planning sequential decisions in
novel environments. Linking hippocampal theta to par-
ticipants’ performance on a spatial planning task, theta
power during the planning phase correlated with faster
subsequent spatial decisions. Furthermore, decision
speed correlated with choice accuracy, regardless of
path length differences. Linking the human hippocam-
pal theta rhythm to processing demands, we found that
hippocampal theta power selectively corresponded to

planning performance in mazes containing multiple
choice points during the MEG task.

Our observation of increased hippocampal theta
power during spatial decision-making adds to an emer-
ging literature investigating the role of the hippocampal
theta rhythm during decision-making in rodents
(Johnson & Redish, 2007; Belchior et al., 2014; Pezzulo,
Kemere, & van der Meer, 2017; Schmidt et al., 2013;
Wikenheiser & Redish, 2015) and humans (Guitart-
Masip et al., 2013). Yet, the specific role of the hippo-
campal theta rhythm in planning has remained unclear;
despite recent evidence relating the rodent (Miller et al.,
2017) and human hippocampus (Kaplan et al., 2017a) to
planning. Additional support for a hippocampal role in
planning comes from evidence that hippocampal neu-
rons code the distance to goal locations (Ekstrom et al.,
2003; Sarel, Finkelstein, Las, & Ulanovsky, 2017; Villette,
Malvache, Tressard, Dupuy, & Cossart, 2015; Watrous,
Miller, Qasim, Fried, & Jacobs, 2018). Furthermore,
Wikenheiser and Redish (2015) found that firing of
place cell sequences coupled to the hippocampal theta
rhythm extended further on journeys to distal goal loca-
tions. We parallel these findings by showing that hippo-
campal theta power was selectively related to efficient
sequential planning.

Differing from previous MEG/iEEG hippocampal theta
studies that observe power increases related generally to
enhanced long- or short-term memory performance
(Backus, Schoffelen, Szebényi, Hanslmayr, & Doeller,
2016; Guitart-Masip et al., 2013; Lega, Jacobs, & Kahana,
2012; Olsen, Rondina, Riggs, Meltzer, & Ryan, 2013), we
find hippocampal theta power effects associated with
planning behavior in sequential, but not simpler mazes,
during a task requiring little to no learning. Given the
known relationship between the hippocampal theta
rhythm and spatial trajectories, these findings may relate

Figure 4. Intracranial EEG data from hippocampal depth electrodes A. Image of electrode locations in the patient overlaid on 3D
brain template. Right hippocampal depth electrodes with contacts used in the present analyses are highlighted in orange. B. Time-
frequency plot showing a negative correlation over trials between subsequent reaction time (RT) and 4–8 Hz theta power during
entire sequential planning period averaged across both hippocampal contacts.
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to sequential spatial decision-making that focuses on sig-
nifying a ‘location’ update within a sequence of choices.
Supporting this explanation, recent work has suggested
that the hippocampus can suppress noise in our everyday
environment to focus on sub-goals during multi-step
planning (Botvinick & Weinstein, 2014) and biophysical
models predict that the hippocampal theta rhythm can
underlie this type of ‘sub-goaling’ (Kaplan & Friston, 2018).

Still, several aspects of our results remain unclear. For
instance, an alternative explanation for not observing
right hemisphere or non-sequential hippocampal theta
power spatial planning effects could be that there are
multiple theta sources (e.g., anterior right vs posterior
left hippocampus) corresponding to sequential and non-
sequential RT effects (Miller et al., 2018), which MEG does
not have adequate spatial resolution to resolve.
Additionally, using eye movements as a nuisance regres-
sor in our MEG data (and not measuring eye movements
in our iEEG dataset) prevented us from examining the
role of saccadic eye movements in this type of planning,
which we have shown in a previous simulation to be
a crucial component of our planning task (Kaplan &
Friston, 2018). Despite finding hippocampal theta
power selectivity to sequential planning, it is important
to note that we didn’t observe any hypothesized change
in theta power related to path length differences at the
different choice points. One potential explanation for
this null result is that hippocampal distance to goal
coding is primarily related to single units, not oscillations
(Ekstrom et al., 2003; Sarel et al., 2017; Villette et al., 2015;
Watrous et al., 2018). Further evidence supporting this
explanation is needed since the direct relationship
between behaviorally relevant hippocampal theta
power changes and the reactivation of place cell
sequences has yet to be characterized during sequential
planning. Moving toward this characterization, Watrous
et al. (2018) recently observed that human hippocampal
single units exhibit phase-locking to the theta rhythm
and that this phase-locking encoded information about
goal locations during virtual navigation.

We studied multi-step planning in an explicitly spatial
domain, but it isn’t known whether updating our ‘loca-
tion’ to subsequent choice points relates more to the
overhead visual searches of the maze or a more abstract
decision space (Kaplan, Schuck, & Doeller, 2017b). On one
hand, there is mounting evidence of the type
I movement-related rodent hippocampal theta rhythm
extending to virtual (Bush et al., 2017; Ekstrom et al.,
2005, 2003; Kaplan et al., 2012; Watrous, Fried, &
Ekstrom, 2011) and real-life navigation in humans
(Aghajan et al., 2017; Bohbot, Copara, Gotman, &
Ekstrom, 2017). However, evidence from non-spatial
domains is lacking. Future work exploring the role of the

hippocampal theta rhythm in both perceptual exploration
and abstract sequential decisions can determine how
generalizable spatial planning-related hippocampal
theta effects are to decision-making in other domains.
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