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A B S T R A C T

Implicit social biases play a critical role in shaping our attitudes towards other people. Such biases are thought to
arise, in part, from a comparison between features of one’s own self-image and those of another agent, a process
known as ‘bodily resonance’. Recent data have demonstrated that implicit bias can be remarkably plastic, being
modulated by brief immersive virtual reality experiences that place participants in a virtual body with features of
an out-group member. Here, we provide a mechanistic account of bodily resonance and implicit bias in terms of
a putative self-image network that encodes associations between different features of an agent. When subse-
quently perceiving another agent, the output of this self-image network is proportional to the overlap between
their respective features, providing an index of bodily resonance. By combining the self-image network with a
drift diffusion model of decision making, we simulate performance on the implicit association test (IAT) and
show that the model captures the ubiquitous implicit bias towards in-group members. We subsequently de-
monstrate that this implicit bias can be modulated by a simulated illusory body ownership experience, consistent
with empirical data; and that the magnitude and plasticity of implicit bias correlates with self-esteem. Hence, we
provide a simple mechanistic account of bodily resonance and implicit bias which could contribute to the de-
velopment of interventions for reducing the negative evaluation of social out-groups.

1. Introduction

We tend to believe that the actions of ourselves and others are
motivated by attitudes of which we are consciously aware and thus
remain under cognitive control. However, our beliefs about others and,
in particular, the social groups to which they belong play a demon-
strable role in shaping behaviour. Biases regarding other people are
often based on physical appearance, and likely driven by a comparison
between cognitive representations of our own self-image and that of the
other – a process termed ‘bodily resonance’ (Longo, Schuur, Kammers,
Tsakiris, & Haggard, 2009; Maister, Slater, Sanchez-Vives, & Tsakiris,
2015; Tsakiris, 2017). Perceived similarity between one’s self and an-
other agent has been shown to modulate the ability to recognise emo-
tions and bodily states in others. For example, perceived racial simi-
larity has been shown to modulate both the increase in tactile acuity
generated by watching another person being touched (Fini, Cardini,

Tajadura-Jiménez, Serino, & Tsakiris, 2013; Serino, Giovagnoli, &
Làdavas, 2009), and neural responses to observed painful experiences
in others (Xu, Zuo, Wang, & Han, 2009). Similarly, when people in-
teract with a virtual partner, the degree to which they mimic that
partner’s gestures and posture – a sign of improved social harmony
(Bargh & Chartrand, 1999) – is enhanced when their virtual skin col-
ours are the same (Hasler, Spanlang, & Slater, 2017). This mirroring of
observed bodily states in the self is thought to motivate pro-social be-
haviours where our ability to empathise can change our attitudes
(Batson et al., 1997). Conversely, when implicit biases are negative, this
can result in the systematic prevalence of unfavourable evaluations. A
mechanistic understanding of implicit bias is therefore of critical im-
portance both for the study of human behaviour and the functioning of
society.

Interestingly, recent studies using immersive virtual reality (VR) to
modulate bodily appearance have demonstrated that the cognitive
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representation of self-image is remarkably plastic. In these experiments,
participants view a life-sized virtual human body from first-person
perspective that visually substitutes for, and moves synchronously with,
their own body. This creates a strong (illusory) perception of ownership
over the virtual body. Changing the skin tone of the virtual body to that
of a racial out-group for a short period (∼12 min) can subsequently
reduce implicit bias against that out-group (Peck, Seinfeld, Aglioti, &
Slater, 2013); and these reductions in implicit bias have been shown to
persist for at least a week (Banakou, Hanumanthu, & Slater, 2016).
Similarly, results obtained using the rubber hand illusion (Botvinick &
Cohen, 1998) show that perceived ownership of a dark-skinned hand
reduces implicit racial bias in light-skinned participants (Maister,
Sebanz, Knoblich, & Tsakiris, 2013). This effect is not unique to racial
out-groups, as self-identification with child-like attributes are enhanced
after adults are embodied in a child’s body (Banakou, Groten, & Slater,
2013), and a reduction in age-related bias is also observed after younger
participants are embodied in elderly bodies (Tajadura-Jiménez,
Banakou, Bianchi-Berthouze, & Slater, 2017).

Here, we present a mechanistic account of bodily resonance that can
be used to explain both the existence of implicit bias and the manner in
which that implicit bias can be modified by an illusory body ownership
experience. We postulate a distributed self-image network which con-
tains groups of neurons that respond to specific features, and encodes
associations between different features of an agent’s self-image. During
subsequent perception of another agent, total output from the self-
image network is proportional to the degree of overlap between that
agent’s features and the encoded self-image, providing a mechanistic
account of bodily resonance. Using output from the self-image network
to drive a drift diffusion model of binary decision making, we can
subsequently account for behavioural data obtained using a standard
measure of implicit bias – the implicit association test (IAT; Greenwald,
McGhee, & Schwartz, 1998). Moreover, additional learning of novel
self-image features during simulated embodiment in a virtual body can
modulate subsequent bias against specific out-groups. Finally, we show
that both the magnitude and plasticity of implicit bias in these simu-
lations is modulated by self-esteem, as predicted theoretically (Maister
et al., 2015) and observed experimentally (Galinsky & Ku, 2004).

2. Results

2.1. The self-image network and bodily resonance

Our mechanistic account of bodily resonance centres on a hy-
pothesised ‘self-image’ network in the brain comprised of neurons
which selectively respond to various features that might constitute
elements of a person’s self-image (i.e. gender, skin tone, hair colour,
etc.). These neurons are activated by external sensory input whenever
those features are perceived –whether they belong to the agent itself, or
to any other agent or stimulus. Hence, each agent’s self-image network
contains neurons which selectively respond to features that they
themselves do not have, but have been observed in other agents (i.e.
blonde haired agents will also have neurons in their self-image network
that respond to brown hair, for example). Importantly, however, per-
ception of the agent’s own bodily features enables associations to de-
velop between active neural populations in the self-image network
through Hebbian learning (Hasselmo, 2006; Hebb, 1949; see Section 4).
We speculate that this privileged role for one’s own features might be
driven by motor synchrony between those features and self-generated
actions, potentially mediated by some neuromodulatory signal. The
self-image network is therefore analogous to a standard model of auto-
associative memory, encoding a single memory consisting of associa-
tions between different features of the agent’s self-image (Hopfield,
1982; Marr, 1971). Following encoding, the total firing rate output of
the self-image network in response to external sensory input corre-
sponding to perceived features provides a measure of bodily resonance,
equivalent to the familiarity signal generated by auto-associative net-
work models (Greve, Donaldson, & Van Rossum, 2010).

As an example, consider a simple self-image network consisting of
N=4 neurons that each encode a different potential feature: male,
female, brown and blonde hair (Fig. 1A; noting that, without loss of
generality, each feature would likely be encoded by a much larger
population of neurons in the brain, and each agent’s self-image network
would encode a much greater constellation of potential features). Let us
assume that our simulated agent is a brown haired female, such that the
self-image network will come to encode associations between neural

Fig. 1. The Self-image Network Model of
Bodily Resonance. (A) In this example, the
self-image network is comprised of four
neural sub-populations that respond to the
perception of male (M), female (F), brown
(Br) and blonde (Bl) haired features either in
the agent itself or in other agents. (B) When
the agent perceives its own features, a neu-
romodulatory signal allows synaptic con-
nections between active sub-populations to
be strengthened by a Hebbian learning rule.
In this case, the simulated agent is a brown-
haired female, such that the self-image net-
work comes to encode strong associations
between neurons encoding brown-haired
and female features. (C, D) During sub-
sequent perception of another agent, sen-
sory input to sub-populations encoding the
features of that agent generates additional
activity in the network via recurrent sy-
naptic connections if those features overlap
with the encoded self-image. The total firing
rate output of the self-image network, likely
equivalent to the BOLD response observed
in fMRI, can therefore be interpreted as a
measure of bodily resonance. In this ex-

ample, perception of a brown-haired agent produces activity in the sub-population encoding female features, while perception of a blonde-haired agent produces no
additional activity in the self-image network. (E) Hence, the degree of overlap between the features perceived in another agent and the encoded self-image correlates
with both the total output firing rate of the self-image network and the firing rate of any single unit encoding a feature that is part of the self-image, but not currently
being perceived.
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populations encoding brown hair and female features (Fig. 1B). Once
this self-image has been encoded, perceiving another agent with brown
hair activates the corresponding neural population and generates re-
current currents which excite neurons encoding female features,
boosting total network output (Fig. 1C). Conversely, perceiving another
agent with blonde hair activates the corresponding neural population
but generates no additional recurrent excitation, producing lower
overall firing rates (Fig. 1D). Importantly, perceived features need not
be physical – we might also postulate neural populations in the self-
image network that encode more abstract characteristics, such as in-
terest in a particular sport or a certain set of political beliefs (Serino
et al., 2009), which will then also contribute to bodily resonance when
observed in other agents.

More detailed simulations (see Section 4) demonstrate that, fol-
lowing the learning of associations between a constellation of arbitrary
features belonging to a simulated agent, the total firing rate output of
the self-image network in response to the subsequent perception of
other agents correlates with the degree of overlap between perceived
and encoded features (Fig. 1E). If we assume that this total firing rate
output correlates with the BOLD response observed in fMRI, then this is
equivalent to a parametric increase in the BOLD response of the self-
image network according to the degree of overlap between the physical
or abstract features of an observed agent and the self. Interestingly, as
the additional network output is produced by recurrent excitation be-
tween neurons that encode those features, a measure of bodily re-
sonance is also provided by the activity of any neuron or sub-population
of neurons that form part of the encoded self-image. For example,
bodily resonance between the brown-haired female agent and any other
agent can be estimated by simply measuring the firing rate of neurons
encoding either female or brown-haired features (Fig. 1E).

2.2. Modelling implicit bias

To make further comparisons between simulations of the self-image
network and empirical data, however, we require the model to generate
behavioural output. Measures of implicit bias are typically oper-
ationalised using the Implicit Association Test (IAT), a two alternative
forced-choice task that requires participants to categorise binary sets of
visual stimuli as quickly as possible by generating a specific motor re-
sponse (Greenwald et al., 1998). Typically, two sets of stimuli are
presented: one set of ‘attributes’, generally being positive and negative
words; and one set of ‘targets’, generally being images of members of
the social in-group and out-group of interest (male and female or light-
and dark- skinned faces, for example). In alternate ‘congruent’ and
‘incongruent’ blocks, participants are instructed to generate the same
motor response either for positive words and images of the in-group,
and negative words and images of the out-group; or for positive words
and images of the out-group, and negative words and images of the in-
group, respectively (Fig. 2A). A comparison of reaction times between
congruent and incongruent blocks subsequently provides a measure of
implicit bias, with a positive IAT score indicating implicit positive bias
towards the in-group (i.e. faster reaction times in congruent vs incon-
gruent trials, supporting the idea of congruence between positive words
and in-group features). Importantly, differences in reaction times
during the IAT are largely unnoticed by participants and difficult to
fake, making this task a suitable strategy for measuring implicit bias
without the potential confound of social desirability (Greenwald,
Banaji, & Nosek, 2015; Hahn, Judd, Hirsh, & Blair, 2014; Nosek,
Greenwald, & Banaji, 2007; Oswald, Mitchell, BlantonH, & Tetlock,
2013).

From a computational perspective, binary decision-making pro-
cesses such as the IAT have been extensively modelled using drift-dif-
fusion networks, in which two self-excitatory but mutually inhibitory
neural populations noisily integrate sensory evidence for opposing
motor responses until some firing rate threshold is reached and a de-
cision is made (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;

Klauer, Voss, Schmitz, & Teige-Mocigemba, 2007; Fig. 2B). Drift-dif-
fusion models produce a reaction time for each decision in addition to a
binary output regarding the decision made which may or may not
correspond to the sensory evidence provided (i.e. be correct or in-
correct). Greater sensory evidence for one motor response is accounted
for by a greater level of external input to the corresponding neural
population, causing the decision threshold to be reached more quickly
and more reliably – i.e. with faster reaction times and lower error rates,
as observed experimentally. Multiple iterations can subsequently be
used to generate a reaction time distribution and error rate which can
be directly compared with empirical data. Hence, we make use of a
standard drift-diffusion model (Wong, Huk, Shadlen, & Wang, 2007) to
examine the behavioural performance of our self-image network on a
simulated IAT.

In standard binary decision making tasks, such as the moving dot
paradigm (Huk & Shadlen, 2005), sensory evidence in favour of each
motor output is experimentally defined (i.e. as the relative proportion
of dots moving in each direction). In the case of the IAT, however, it is
less clear how sensory evidence should be established for each visual
stimulus (corresponding either to a positive or negative word, or an
image of an in-group or out-group member, in congruent and incon-
gruent blocks). We hypothesise that each stimulus category in the IAT
(i.e. positive and negative words, in-group and out-group faces) is en-
coded by a sub-population of neurons in the self-image network which
receive a constant level of external sensory input when stimuli from
that category are presented. In addition, we assume that all neural
populations encoding features that are mapped to a specific response in
the IAT provide input, equivalent to sensory evidence, to the corre-
sponding motor output population in the drift diffusion model.

Thus, during a block of congruent trials, we assume that transient
connections are formed between neurons encoding positive words/
features of the in-group and the same motor response population (al-
though we do not explicitly model the formation of these connections).
Equally, during a block of incongruent trials, we assume that connec-
tions are transiently formed between neurons encoding positive words/
features of the in-group and different motor response populations (see
Fig. 2C). Hence, in congruent trials (assuming that positive words are
associated with in-group features in the self-image network), activity
from a positive word or feature can spread to the corresponding motor
response population via two routes, either directly or via recurrent
connections within the self-image network, reducing reaction times. By
contrast, on incongruent trials, recurrent activity in the self-image
network spreading from a positive word to a feature of the in-group, for
example, will then drive the opposing motor response population, in-
creasing reaction times. Output from the self-image network to the drift
diffusion model therefore provides a natural account of the IAT effect.

To illustrate this property, we simulate previously published ex-
perimental data obtained from a group of sixty light-skinned female
participants performing a test of implicit racial bias (for further details,
see Peck et al., 2013). Each simulated agent’s self-image network con-
tains neurons that code for male and female, light- and dark- skinned
features. In addition, we incorporate neural populations that code for
positive and negative attributes, respectively, and which can be used to
encode each agent’s measure of positive (or negative) self-esteem when
they perceive their own image (see Section 4). First, each simulated
agent learns about its own self-image by encoding associations between
neural populations responding to light-skinned and female features and
positive self-esteem. We subsequently simulate a racial IAT by pre-
senting stimuli corresponding to positive and negative words, light- and
dark- skinned features to the self-image network and using output from
each population to drive motor response populations in the drift dif-
fusion network (with light-skinned features and positive words driving
the same motor population in congruent trials and competing popula-
tions in incongruent trials). This generates reaction times and error
rates for blocks of congruent and incongruent trials which can be used
to compute an IAT score for each simulated agent that can then be
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compared with empirical data. Our results demonstrate that the model
produces significantly positive IAT scores across simulated agents (one-
sample t(59)= 26.5, p < 0.001, 95% CI= [0.461 0.537], d= 3.42)
analogous to that seen in real participants (one-sample t(59)= 15.5,
p < 0.001, 95% CI= [0.44 0.57], d= 2.01; participant details can be
found in Peck et al., 2013; see Fig. 3A). In fact, there is no difference
between IAT scores generated in our simulations and those recorded
experimentally (Kolmogorov-Smirnov test; D(118)= 0.20, p=0.16).

In these simulations, the IAT effectively provides a mechanism with
which to ‘read out’ the relative strength of implicit associations between
various self-image features (i.e. gender, skin colour) and positive or
negative attributes (arising from an agent’s self-esteem) stored in the
self-image network. Strengthened recurrent connections between
neural populations encoding those features produce a supralinear
summation of input firing rates within those populations, which gen-
erates faster and more accurate responses in the drift-diffusion model
when they provide input to the same motor response population.
Alternatively, as described above, it is also possible to infer the degree
of bodily resonance between each simulated agent and other agents
they perceive by measuring simply the total firing rate output of the
self-image network, likely equivalent to the observed BOLD response in
fMRI. Accordingly, the total firing rate output of the self-image network
in the light-skinned, female agents simulated above is much greater
when perceiving light, as opposed to dark-, skinned faces, due to the
greater overlap with their encoded self-image (cf. Fig. 1E).

2.3. Modulating implicit bias using immersive virtual reality

Having established that the self-image network can account for an
empirically observed distribution of IAT scores, we next ask whether it

can also replicate the observed changes in implicit bias generated by
brief illusory body ownership experiences. Following (Peck et al.,
2013), we divide our sixty light-skinned, female simulated agents be-
tween four VR conditions in which they are embodied in either a light
(EL), dark (ED) or ‘alien’ (EA) skinned virtual body, or not embodied
(NE) but passively observe a mirror reflection of a dark-skinned virtual
body for the same period of time (see Peck et al., 2013 for further de-
tails). To simulate the VR experience, neurons in the self-image network
that code for each feature of the virtual body are externally stimulated
while learning proceeds for the embodied conditions, but not for the
agents that passively view the virtual body (see Section 4). Each agent
then completes a second, post-VR racial IAT as described above.

Our results demonstrate that simulated changes in implicit racial
bias (ΔIAT) precipitated by the VR experience show the same pattern as
empirical data, with implicit bias against dark-skinned individuals
being selectively reduced in agents/participants that are embodied in a
dark-skinned virtual body during the VR experience (Banakou et al.,
2016; Peck et al., 2013; Fig. 3B). Specifically, we find a significant
decrease in IAT scores in the ED condition (one-sample t(14)=−2.24,
p < 0.05, 95% CI= [−0.24 to 0.0055], d= 0.58) which closely ap-
proximates that observed experimentally (one-sample t(14)=−2.01,
p=0.06, 95% CI= [−0.26 to 0.0083], d= 0.52; see Peck et al., 2013
for participant details). Similarly, we find a significant difference in
ΔIAT scores between the EL and ED conditions (two-sample t
(28)= 3.60, p < 0.005, 95% CI= [0.105–0.382], d= 0.57) which
matches that observed experimentally (two-sample t(28)= 2.25,
p < 0.05, 95% CI= [0.018–0.375], d= 0.40; see Peck et al., 2013 for
further details). Importantly, although the original empirical study on
which we base our simulations had relatively low power (power= 0.56
with α=0.05; Peck et al., 2013), this result has since been replicated

Fig. 2. The Drift Diffusion Model of
Behavioural Performance in the Implicit
Association Test. (A) Each IAT trial consists
of a fixation period followed by a stimulus
that remains on screen until a response is
made. Stimuli are either positive or negative
‘attributes’; in-group or out-group ‘targets’,
and must be classified as quickly as possible
by making a left (L) or right (R) key press.
Reaction times (RTs) are compared between
‘congruent’ blocks, in which positive attri-
butes and in-group stimuli require the same
key press; and ‘incongruent’ blocks, in
which positive attributes and out-group sti-
muli require the same key press, to produce
an IAT score. (B) Behavioural performance
on the IAT can be modelled using a drift
diffusion model (DDM) in which two self-
excitatory but mutually inhibitory neural
populations coding for left and right motor
outputs, respectively, noisily integrate ex-
ternal sensory evidence until the firing rate
of one population reaches a pre-defined de-
cision threshold. The time taken to reach the
decision threshold produces an RT, while
the winning population corresponds to the
decision made (which may or may not cor-
respond to the sensory evidence presented,
i.e. be either correct or incorrect). (C) In our
simulations, the sensory evidence provided
to each DDM motor population in each IAT
trial is determined by activity in the self-
image network. Neurons coding for the IAT
stimulus – Positive or Negative attributes

and in- or out- group targets (Light- and Dark- skinned faces, respectively, in the example shown here) – receive a set level of external sensory input, while additional
input to either motor response population arises from recurrent excitation within the self-image network (indicated by thicker coloured arrows). Note that con-
nections from the self-image network to the DDM are flexibly reconfigured between congruent and incongruent blocks. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

R.L. Bedder et al. Cognition 184 (2019) 1–10

4



several times, suggesting that the observed effect is real (Banakou et al.,
2016; Groom, Bailenson, & Nass, 2009; Maister et al., 2013). In our
simulations, the change in IAT scores arises from the novel associations
between positive and dark-skinned self-image features generated
during the VR experience, which produce increased bodily resonance
with dark-skinned agents in the post-VR IAT, manifesting as reduced
implicit bias against those agents.

Conversely, when simulated agents are embodied in an ‘alien’ vir-
tual body, or passively view a dark-skinned virtual body, there is no
significant change in IAT scores in either the simulated (one-sample t
(14)=−0.51, p=0.62 and t(14)=−0.60, p=0.56, respectively) or

empirical data (one-sample t(14)=−0.10, p=0.92 and t
(14)=−0.18, p=0.86, respectively; see Peck et al., 2013 for further
details), as no new associations are encoded in the self-image network.
Interestingly, our results also replicate the increase in IAT scores – i.e.
increase in bias towards light-skinned agents – generated by a VR ex-
perience in a light-skinned virtual body, which reaches significance in
the simulations (t(14)= 3.06, p < 0.01, 95% CI= [0.0356–0.203],
d= 0.79) but not in the empirical data (t(14)= 1.15, p= 0.27). This
arises from the strengthening of associations between neurons in the
self-image network encoding positive and light-skinned features during
the VR experience, which subsequently produces increased bodily

Fig. 3. Empirical and Simulated Performance on the IAT. (A) Comparison of the IAT effect in empirical data from a population of sixty light-skinned females (see
Peck et al., 2013 for details) and simulated data from a population of sixty light-skinned female agents, each of which shows significantly positive implicit bias
towards other light-skinned agents (both p < 0.001). (B) Changes in the IAT effect (ΔIAT= IATpost − IATpre) produced by a short VR experience in real participants
and simulated agents embodied in a light-skinned (EL); dark-skinned (ED); or alien (i.e. purple skinned) virtual body (EA); or who passively view another dark-
skinned agent in the VR environment (NE). In both real and simulated data, embodiment in a dark-skinned virtual body generates a reduction in the IAT effect.
Moreover, in the empirical data, embodiment in a light-skinned virtual body generates a small but non-significant increase in the IAT effect, which reaches sig-
nificance in the simulated data. (C) The measure of bodily resonance produced by the self-image network is modulated by self-esteem: specifically, agents with lower
self-esteem (i.e. reduced activity in neurons coding for positive features when the agent perceives its own body) exhibit lower overall bodily resonance (left), and
lower firing rates in neurons coding for positive features (right), when observing other agents whose features overlap with their own. This reduction in bodily
resonance corresponds to both (D) lower IAT scores and (E) less significant changes in IAT scores after being embodied in a dark skinned virtual body for agents with
lower self-esteem. See Sections 2.2–2.4 for further details. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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resonance with, and therefore bias towards, light-skinned faces in the
post-VR IAT. Finally, we note the wide variance in ΔIAT scores ob-
served in empirical data for the NE condition which, alongside the re-
latively small sample sizes, is likely to account for the absence of a
difference in ΔIAT scores between the EL and NE (two-sample t
(28)= 0.63; p= 0.54; 95% CI= [−0.184 to 0.347]; d= 0.23); ED
and NE conditions (two-sample t(28)=−0.87; p=0.39; 95%
CI= [−0.383 to 0.154]; d= 0.32). This may be due, at least in part, to
the low test-retest reliability of the IAT (see Section 3). Given larger
sample sizes, however, the proposed mechanism predicts that ΔIAT
scores for both the EL and ED conditions would differ significantly from
those for the NE condition, in which no new associations are learned in
the self-image network and therefore no change in bodily resonance is
produced.

As described above, it is also possible to decode changes in implicit
bias directly from changes in the total output firing rate (i.e. putative
BOLD response) of the self-image network before and after the VR ex-
perience. In these simulations, the total firing rate output of the self-
image network during the perception of dark-skinned faces is increased
for those agents that are embodied in a dark-skinned body (ED), re-
flecting an increase in bodily resonance, but does not change for those
agents that are embodied in a light-skinned body. This provides an
empirically accessible measure of the change in implicit bias exhibited
by these agents following the VR experience that is independent of the
IAT.

2.4. Magnitude and plasticity of implicit bias is modulated by self-esteem

Having established that the self-image network model can replicate
existing IAT data, we next ask whether it can be used to make any
specific predictions for future behavioural experiments. For example, it
has been hypothesised that self-esteem may modulate the IAT effect
(Maister et al., 2015), while experimental data shows that reductions in
implicit bias after imagining scenarios from the first-person perspective
of an out-group member correlate positively with measures of self-es-
teem (Galinsky & Ku, 2004). To this end, one important property of the
self-image network is that feature encoding need not be binary: the
perception of fair hair, for example, might produce moderate firing
rates in neural populations encoding both blonde and brown hair, such
that a fair-haired agent will experience bodily resonance with other
agents that have either blonde or brown hair. We can exploit this
property to examine the effect of differences in self-esteem on the
magnitude and plasticity of IAT scores (Banakou et al., 2016; Peck
et al., 2013). When an agent is learning its own self-image, lower self-
esteem can be modelled as lower firing rates in the neural population
encoding positive features, producing lower synaptic weights between
that population and those encoding other features in the self-image
network. During the subsequent perception of other agents with fea-
tures that match the encoded self-image, these reduced synaptic
weights have a moderate effect on overall bodily resonance, but pro-
duce significantly lower firing rates in the neural population encoding
positive features (Fig. 3C). In turn, this reduces the total output from
the self-esteem network to the relevant motor output population in the
drift diffusion model during congruent trials of the IAT, and hence the
magnitude of IAT scores.

More detailed simulations (see Section 4) demonstrate that IAT
scores are significantly modulated by self-esteem (One-way ANOVA, F
(2,57)= 22.8, p < 0.001, η2= 0.44; Fig. 3D), with those scores being
significantly greater for agents with high self-esteem than those with
both moderate (two-sample t(38)= 3.99, p < 0.001, 95%
CI= [0.0762–0.233], d= 1.07) and low (two-sample t(38)= 6.59,
p < 0.001, 95% CI= [0.198–0.374], d= 1.44) self-esteem; and those
for agents with moderate self-esteem being significantly greater than
those with low self-esteem (two-sample t(38)= 2.93, p < 0.01, 95%
CI= [0.0406–0.223], d= 0.847). Moreover, during the VR experience,
lower firing rates in the neural population encoding positive self-image

features generate lower synaptic weights between neurons encoding
dark-skinned and positive features, such that the change in IAT as a
result of the VR experience is also reduced (Fig. 3E). Specifically, the
change in IAT scores generated by the VR experience is significantly
modulated by self-esteem (One-way ANOVA, F(2,57)= 4.75,
p < 0.05, η2= 0.143), with ΔIAT being significantly greater for agents
with high self-esteem than those with both low (two-sample t
(38)= 2.80, p < 0.01, 95% CI= [−0.233 to 0.0375], d= 0.82) and
moderate self-esteem (two-sample t(38)= 2.09, p < 0.05, 95%
CI= [−0.207 to 0.0033], d= 0.63; other p > 0.44). In summary, our
model provides a neural level mechanism that account for the overall
magnitude and plasticity of IAT scores across participants being
modulated by measures of self-esteem, as hypothesised previously
(Maister et al., 2015) and consistent with experimental data (Galinsky
& Ku, 2004).

3. Discussion

We have presented a mechanistic account of bodily resonance and
demonstrated that it can be used to explain both the existence of im-
plicit bias and the plasticity of that bias following a brief illusory body
ownership experience. Our account centres on a self-image network
comprised of neurons that respond selectively to various features of a
person’s self-image. Once this network has learned associations be-
tween the constellation of features belonging to the self, the perception
of another agent with similar features generates recurrent excitation
that boosts total network output, analogous to a measure of bodily
resonance. By subsequently applying output from the self-image net-
work to a drift-diffusion model of perceptual decision-making, we can
simulate behavioural performance on an implicit association test (IAT)
to quantify implicit bias. Consistent with empirical data, we demon-
strate that simulated agents (which we assume to have positive features
in their self-image) exhibit significantly positive IAT scores, and that
further learning in the self-image network during an illusory body
ownership experience can significantly modulate those IAT scores
(Banakou et al., 2016; Peck et al., 2013). Finally, we show that both the
magnitude and plasticity of implicit bias is modulated by self-esteem, as
hypothesised previously (Maister et al., 2015) and supported by prior
experimental findings (Galinsky & Ku, 2004).

The self-image network hypothesised here is maximally active when
an agent perceives itself, due to the additional recurrent excitation
produced by strengthened associations between neural populations
encoding observed features. As such, the self-image network is likely to
have been identified by neuroimaging studies seeking the neural cor-
relates of self-recognition (Feinberg & Keenan, 2005; Keenan,
McCutcheon, & Pascual-Leone, 2001). Although it may be widely dis-
tributed, these studies suggest that the self-image network is right la-
teralised and centred on frontal (including inferior, medial and middle
frontal gyri) and/or parietal (including the inferior parietal lobule,
supramarginal gyrus and precuneus) cortices (see Devue & Bredart,
2011; Decety & Sommerville, 2003 for a review). Given that these
neurons are active both when an agent perceives a specific feature in
itself and in any other agent, it is interesting to note the overlap be-
tween these cortical regions and the mirror neuron system (Rizzolatti,
Fadiga, Fogassi, & Gallese, 1999; Turjman, 2016). However, we em-
phasise that – unlike the mirror neuron system – the putative self-image
network described here is insensitive to the perceived execution of any
action; and must contain neurons that respond to features which have
been perceived in other agents, but never formed part of the agent’s
own self-image.

Interestingly, no significant change in implicit bias is observed ex-
perimentally following a VR experience in which participants are not
embodied, but simply observe a virtual body that moves asynchro-
nously with respect to their own actions (Peck et al., 2013). This effect
is replicated by our model, given the assumption that additional
learning in the self-image network requires a neuromodulatory signal
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contingent on motor synchrony between the perceived virtual body and
simulated agent. Hence, this signal effectively encodes the level of body
ownership felt by the simulated agent in the perceived virtual body. In
the results presented here, we used binary levels of body ownership that
either allowed or prevented any further learning in the self-image
network during the simulated VR experience. However, there is no
reason why this signal could not vary continuously according to the
degree of body ownership felt by the simulated agent, modulating the
degree of learning in the self-image network during any virtual embo-
diment experience and subsequently the magnitude of change in im-
plicit bias following that experience. This is consistent with existing
empirical data which demonstrates that proxy measures of presence
(the feeling of physically being in the VR environment), such as the
degree of nervousness felt by participants when other simulated agents
approach them, correlate with the reduction in IAT scores observed
after a VR experience (Hasler et al., 2017; Peck et al., 2013). In addi-
tion, while the model predicts no differences in the modulation of im-
plicit bias produced by any specific paradigm, it may be that immersive
VR paradigms generate a greater feeling of body ownership, and
therefore precipitate more significant changes in implicit bias, than less
immersive protocols such as the rubber hand or enfacement illusion
(Sforza, Bufalari, Haggard, & Aglioti, 2010).

In addition to accounting for the reduction in implicit bias exhibited
by light-skinned participants following embodiment in a dark-skinned
virtual body, our model also replicates the increase in implicit bias
sometimes exhibited by light-skinned participants following embodi-
ment in a light-skinned virtual body (Banakou et al., 2016; Peck et al.,
2013). This empirical finding might appear surprising, as it implies the
further strengthening of associations between neurons in the self-image
network encoding light-skinned and positive features during the VR
experience, despite participants having had ample prior opportunity to
encode these associations during their daily lives. It is not clear what
precipitates this additional learning, but we hypothesise that the VR
experience might be sufficiently novel to precipitate increased synaptic
plasticity in the putative self-image network of those participants.
Consistent with this view, experimental data indicates that the increase
in implicit bias exhibited by light-skinned participants following em-
bodiment in a light-skinned virtual body disappears with multiple ex-
posures to the VR paradigm – presumably, as the experience becomes
more familiar (Banakou et al., 2016). Conversely, the decrease in im-
plicit bias exhibited by light-skinned participants following embodi-
ment in a dark-skinned virtual body does not disappear following
multiple exposures, suggesting either that the VR experience maintains
its novelty, or that the synaptic connections between neurons encoding
dark-skinned and positive features in those participants have not been
saturated by a lifetime of exposure to their own self-image. In any case,
the speed with which the encoded self-image is updated indicates that
the network can flexibly respond to other rapid changes in an agent’s
features which, importantly, need not be restricted to physical char-
acteristics but also include abstract beliefs, opinions and allegiances.

3.1. Limitations

Despite this model qualitatively replicating a large body of experi-
mental data, it also exhibits some limitations that merit further dis-
cussion. First, it must be emphasised that the output of the drift diffu-
sion network is inherently noisy, leading to significant variability in the
magnitude of implicit bias, and changes in implicit bias, across simu-
lated agents. While this might provide a more realistic approximation of
experimental data, it also highlights the need for larger samples – both
in terms of participants, and the number of trials used in the IAT – for
identifying pre-existing, and experimentally induced changes in, im-
plicit bias. It is also important to note that, although the IAT has been
widely used in studies of implicit bias, both its predictive and dis-
criminant validity, internal and test-retest reliability have been ques-
tioned, with some meta-analyses suggesting that it is no better than

explicit measures at predicting intergroup behaviour (Oswald et al.,
2013). While this debate continues, it is important to note that the
magnitude and plasticity of implicit bias described in these simulations
can also be assayed by the total firing rate output of the self-image
network, likely equivalent to the BOLD response observed in fMRI, and
independent of the IAT.

Second, the model cannot account for all existing data relating to
behaviourally induced manipulations of implicit bias – it is restricted to
those that result from changes in self-image (i.e. that arise from bodily
resonance). However, numerous experiments have demonstrated that
interactions with members of an out-group can also modulate implicit
bias, as described by the social contact hypothesis (Pettigrew & Tropp,
2006; Pettigrew, 1998). In addition, implicit biases are likely to reflect
associations between specific groups and positive or negative valence
learned slowly across a lifetime of social interaction (Banakou et al.,
2016). Further work is needed to establish whether these data can also
be accounted for by this model, or whether they imply an additional
mechanism that contributes to overall implicit bias. Extending the
model in this direction may also help to account for individual differ-
ences, which can only currently be accounted for in these simulations
by differences in self-esteem. Similarly, experimental data demonstrate
that the effects of manipulating self-image through VR experiences are
not limited to changes in implicit bias, but can also modulate sub-
sequent visual perception. For example, adults exhibit both an in-
creased bias towards child-like attributes in an IAT and overestimate
the size of physical objects within the environment following embodi-
ment in virtual bodies corresponding to small children (Banakou et al.,
2013; Tajadura-Jiménez et al., 2017). Again, further work is required to
establish whether these effects can be accounted for by the framework
described here. Finally, this simple model weights all features encoded
by the self-image network with the same importance, such that implicit
bias against out-group members defined by skin colour is identical to
that against out-group members defined by hair colour, for example.
However, a simple extension of the model could allow the impact of
different features on the dynamics of the self-image network to be
manipulated, by changing the size of the respective neural population
(s) to modulate the amount of recurrent excitation produced and
therefore the contribution to overall bodily resonance.

3.2. Predictions

Importantly, the model also makes several testable predictions for
future empirical studies. First, it predicts parametric changes in the
BOLD response generated by the self-image network according to the
degree of overlap between an agent’s features and those perceived in
other agents. Second, it predicts that neural populations within the self-
image network will selectively respond to the perception of specific
features, such as blonde hair, whether belonging to the self or any other
agent. When those neurons encode features that do form part of the
agent’s self-image, however, then they should also fire – at a lower rate
– when the agent observes any other features that form part of its self-
image, due to the strengthened recurrent connectivity between the re-
spective neural populations. This property could also be probed using
fMRI adaptation (Grill-Spector & Malach, 2001), where the network
should generate a reduced BOLD signal when perceiving different fea-
tures that form part of an agent’s self-image in quick succession, com-
pared to perceiving different features that do not form part of an agent’s
self-image. Finally, it is important to note that the reduction in implicit
bias observed here is contingent on novel associations between out-
group features and positive attributes being generated during the illu-
sory body ownership experience. However, the model also predicts that
implicit bias would be increased if those novel associations were in-
stead formed between out-group features and negative attributes – if
the participant experienced unpleasant or traumatic events during the
body ownership illusion, for example. Hence, the model can also ac-
count for previous results that have demonstrated an increase in
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implicit racial bias following an immersive VR experience during which
participants took part in a job interview (Groom et al., 2009).

3.3. Conclusion

In conclusion, we provide a mechanistic account of bodily re-
sonance, associated implicit bias, and changes in that implicit bias in-
duced by illusory body ownership experiences that modulate self-
image. The understanding of implicit bias is of key importance to
cognitive science, and also has the potential to contribute to the smooth
functioning of society by identifying effective interventions that can
reduce the negative evaluation of social out-groups. The results pre-
sented here, and in previous empirical studies, suggest that the use of
virtual reality technology to allow embodiment in virtual bodies cor-
responding to members of the social out-group may represent a key
strategy in pursuit of this goal.

4. Materials and methods

4.1. Self-image network model of bodily resonance

The self-image network consists of N neurons that are fully recur-
rently connected except for self-connections, analogous to an auto-as-
sociative network model of mnemonic function (Hopfield, 1982; Marr,
1971). To be parsimonious, we assume full recurrent connectivity, but
network function should be qualitatively unaffected by reducing the
level of recurrent connectivity between neurons. The firing rate output
ri of neuron i is governed by a linear activation function which converts
total input to a firing rate output, with a peak firing rate of rmax=10Hz
and a time constant of τr=10ms (Eqs. (1a) and (1b)). A linear acti-
vation function is used for the sake of simplicity, and network function
should be qualitatively unaffected by the use of other activation func-
tions.

The total input to each neuron Itot, i is a sum of external sensory
input Iext,i and recurrent synaptic currents Irec,i (Eq. (1c)). Each neuron
codes for a specific self-image feature, and a constant external input of
Iext,i=0.5 is applied to that neuron whenever the simulated agent
perceives either itself or another agent with that feature. Recurrent
synaptic currents are equal to the product of synaptic weights wij and
firing rates of connected neurons rj (Eq. (1d)). All firing rates ri and
synaptic connections wij within the network are initially set to zero.

Changes in the strength of synaptic connections between pre-sy-
naptic neuron i and post-synaptic neuron j are governed by a Hebbian
learning rule (Hebb, 1949), i.e. proportional to the product of pre- and
post-synaptic firing rates and a learning rate k=2×10−5 (Eq. (1e)).
In addition, we postulate an abstract neuromodulatory signal e that
differentiates between periods of encoding (e=1), during which the
self-image network encodes associations between different features that
the agent perceives as belonging to itself; and retrieval (e=0), during
which the self-image network produces a measure of bodily resonance
between the encoded self-image and a set of features currently per-
ceived in another agent (Hasselmo, 2006). This neuromodulatory signal
inversely modulates the magnitude of synaptic plasticity (for encoding)
and recurrent synaptic currents (for retrieval; see Eqs. (1b) and (1d)).
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To generate the data presented in Fig. 1E, we simulate one agent
with a self-image network consisting of N=40 neurons that each code
for an arbitrary feature. During an initial learning phase lasting 10 s, the
agent perceives its own features, such that twenty of the neurons in the
self-image network are externally stimulated with a constant current of
Iext=0.5. During this period, the neuromodulatory signal is set to e=1
to allow learning to proceed in the self-image network (Fig. 1B). Fol-
lowing this learning phase, we examine the level of bodily resonance
produced by the self-image network by externally stimulating twenty
neurons in the self-image network with the same level of external sti-
mulation and recording output firing rates after a period of 1 s. During
this period, the neuromodulatory signal is set to e=0, reflecting the
fact that the simulated agent is now perceiving another agent, such that
no learning proceeds, but allowing recurrent synaptic currents to gen-
erate additional activity in the network (Fig. 1C and D). In each of
twenty simulations, the degree of overlap between encoded self-image
and perceived features of the other agent is systematically varied. Im-
portantly, the total level of external stimulation remains constant across
each of these simulations – differences in total firing rate output of the
network being generated by changes in the magnitude of recurrent
synaptic currents only.

4.2. Drift diffusion model of the implicit association test

In drift diffusion models of two alternative forced choice tasks, two
competing neural populations encode the cumulative level of evidence
for left and right motor responses, respectively. Once activity in one or
the other population reaches a pre-defined firing rate threshold, then
the decision is made and the corresponding motor response is enacted.
Here, we make use of a reduced two-variable drift diffusion model
previously described by Wong et al. (2007) and Wong and Wang
(2006). This choice is motivated by computational efficiency, and the
results reported should be qualitatively unaffected by the use of other
drift diffusion network models.

In this model, the firing rate of each population ri (where i=L, R) is
dictated by the relationship between synaptic current input Ii and spike
output for an integrate and fire neuron (Abbott & Chance, 2005), with
parameter values of a=270Hz/nA, b=108 Hz and d=0.154 s (Eq.
(2a)). The total synaptic input to each population is a sum of stimulus
driven sensory-input Istim, input from fixation cross Ifix, background
synaptic inputs Inoise and the excitatory and inhibitory synaptic cou-
plings both between and within populations, Jii=0.3275 nA and
Jij=0.1137 nA respectively (Eq. (2b)). NMDA currents in each popu-
lation Si are dictated by the instantaneous firing rate in that population
modulated by a gain parameter γ=0.641, and decay with a time
constant of τs=60ms (Eq. (2c)). Each population receives background
synaptic inputs, representing inherent noise in the network, with a
mean value of I0=0.3297 nA and a white noise component ηi(t) with
an amplitude of σnoise=0.009 nA that is filtered by a synaptic time
constant of τnoise=2ms (Eq. (2d)).
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Each simulated IAT trial begins with the presentation of a fixation
cross at tfix, which is associated with a small excitatory input Ifix to each
population in the drift diffusion mode (Eq. (3a)). This input, which is
modulated by a gain factor of JA,ext=1.1× 10−3 nA/Hz and exhibits
short-term adaptation with a time constant of τad=40ms, serves to
bring activity in two motor populations to a stable equilibria in which
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they each fire at a moderate rate (Fig. 2B). The amplitude of this current
is reduced when the visual stimulus appears at tstim, and supplemented
by differential levels of input to each population Istim proportional to the
level of sensory evidence s′ available in favour of one decision or the
other, modulated by a gain factor f=0.45, with a mean value of
µ0= 30Hz (Eq. (3b)).
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In our model, the level of sensory evidence in each IAT trial is de-
rived directly from activity in the self-image network. Specifically,
neurons in the self-image network coding for the visual stimulus are
externally stimulated with a constant current of Iext=0.5 while the
neuromodulatory signal is set to e=0 to allow recurrent synaptic
currents but prevent further learning. Once firing rates in the network
reach an equilibrium state, we sample the total firing rate output in
neural populations coding for features that are associated with each
motor response in the IAT (Fig. 2C). The total level of sensory evidence
s′ is subsequently proportional to the difference in total firing rate input
to each motor population, excluding the firing rate activity generated
by external stimulation Iext (Eq. (4)). Importantly, we assume that
connections from the self-image network to the drift diffusion network
are flexibly reconfigured between congruent and incongruent blocks,
but do not explicitly model these changes in connectivity. Once the
firing rate in either motor response population in the DDM reaches a
firing rate threshold of rthresh=55Hz, the reaction time and decision
made are recorded and the next trial begins.

∑ ∑= − − +s r r I( ) 0.05L R ext
'

(4)

The structure of the simulated IAT is consistent with empirical
studies (Banakou et al., 2016; Peck et al., 2013). Specifically, each
participant/simulated agent performs two congruent and incongruent
blocks, each consisting of 48 trials, with the order of blocks counter-
balanced across participants. Trials with reaction times of> 10 s and
participants who have> 10% of trials with reaction times< 300ms
are excluded. In addition, reaction times for error trials are replaced by
the mean reaction time for that block plus 600ms. The IAT score is then
given by the mean RT across congruent trials subtracted from the mean
RT across incongruent trials, normalised by the standard deviation of all
trials prior to any error corrections (Eq. (5)).

= −RT RTIATscore
¯ ¯

STD
incon con

all (5)

To generate the data presented in Fig. 3A, we simulate sixty agents
with self-image networks consisting of N=6 neurons that code for
male, female, light skinned, dark skinned, positive and negative fea-
tures, respectively. We assume that each neuron encodes a single fea-
ture only, rather than a conjunction of multiple features, for the sake of
simplicity only – the conjunctive coding of features by neurons in the
self-image network would have no qualitative effect on the results
presented. During an initial learning phase lasting 10 s, each agent
perceives its own features (female, light skinned and positive), such
that the corresponding neurons in the self-image network are externally
stimulated with a constant current of Iext=0.5. During this period, the
neuromodulatory signal is set to e=1 to allow learning to proceed in
the self-image network.

We subsequently compute the level of bodily resonance produced by
each agent’s self-image network in response to each IAT stimulus by
externally stimulating the corresponding neuron in the self-image net-
work (i.e. that coding for light skinned, dark skinned, positive or ne-
gative features) with the same level of external stimulation while the
neuromodulatory signal is set to e=0, recording output firing rates
after a period of 1 s, and computing the level of sensory evidence

separately for congruent and incongruent trials according to Eq. (4).
These sensory evidence values are then used to replicate the structure of
the IAT task described above, and reaction times and error rates across
congruent and incongruent trials used to compute an IAT score for each
agent according to Eq. (5).

To generate the data presented in Fig. 3B, we simulate an additional
2 s learning period during which neurons in the self-image network
coding for a set of condition specific features are externally stimulated
with a constant current of Iext=0.5. For agents in the EL condition,
these are neurons coding for female, light skinned and positive features;
and for agents in the ED and NE conditions, these are neurons coding
for female, dark skinned and positive features. Agents in the EA con-
dition are randomly assigned to perceive the purple skin tone as either
light or dark, and then neurons coding for female and positive features
are stimulated along with those for the randomly selected skin tone. For
the embodied conditions (EL, ED, and EA), the neuromodulatory signal
is set to e=1, reflecting the fact that the virtual body moves syn-
chronously with their own; while for the NE condition, the neuromo-
dulatory signal is set to e=0, reflecting the fact that the agent is per-
ceiving another agent. After this additional learning period, sensory
evidence for each IAT stimulus is computed separately for congruent
and incongruent trials, and IAT scores are generated as described
above.

Finally, to examine changes in the dynamics of the self-image net-
work when the self-esteem of simulated agents is systematically varied
(Fig. 3C–E), we simply modulate the level of external stimulation to
neurons in the self-image network coding for positive features during
the initial 10 s and subsequent 2 s learning periods, such that those
neurons fire at a lower rate while the agent encodes associations be-
tween its self-image features. Specifically, we vary the level of constant
current to neurons encoding positive features between Iext=0.3 and
Iext=0.5 while all other neurons encoding features of the simulated
agent receive a constant current input of Iext=0.5, as described above.
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