
Computational Models of Grid Cell
Firing

Daniel Bush and Christoph Schmidt-Hieber

Abstract Grid cells in the medial entorhinal cortex (mEC) fire whenever the
animal enters a regular triangular array of locations that cover its environment.
Since their discovery, several models that can account for these remarkably regular
spatial firing patterns have been proposed. These generally fall into one of three
classes, generating grid cell firing patterns either by oscillatory interference, through
continuous attractor dynamics, or as a result of spatially modulated input from
a place cell population. Neural network simulations have been used to explore
the implications and predictions made by each class of model, while subsequent
experimental data have allowed their architecture to be refined. Here, we describe
implementations of two classes of grid cell model – oscillatory interference and
continuous attractor dynamics – alongside a hybrid model that incorporates the
principal features of each. These models are intended to be both parsimonious and
make testable predictions. We discuss the strengths and weaknesses of each model
and the predictions they make for future experimental manipulations of the grid cell
network in vivo.

Experimental Data

Grid cells recorded in freely moving rodents fire action potentials at multiple spatial
locations. These firing fields form the vertices of a regular triangular array covering
the whole environment of a navigating animal (Hafting et al. 2005; Fig. 1a). Grid
cells were initially discovered in the superficial layers of rodent medial entorhinal
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cortex (mEC; Hafting et al. 2005; Fyhn et al. 2008) but have since been identified in
the pre- and para-subiculum (PreS and PaS; Boccara et al. 2010) and in the deeper
layers of mEC, where their firing rate is often modulated by heading direction
(Sargolini et al. 2006). Moreover, grid-like responses have been recorded in the
parahippocampal cortices of the bat (Yartsev et al. 2011), human (Doeller et al.
2010; Jacobs et al. 2013) and non-human primate (Killian et al. 2012). In the rodent,
grid cells are most often recorded in layer II of mEC (mECII), where they are
likely comprised of both reelin-positive stellate (or ‘ocean’) cells, which form the
majority of principal neurons in mECII (Gatome et al. 2010), and calbindin-positive
(or ‘island’) pyramidal cells (Domnisoru et al. 2013; Kitamura et al. 2014; Ray et al.
2014; Sun et al. 2015).

Grid cell firing patterns can be characterised by their scale (i.e. the distance
between adjacent firing fields), orientation (of one principal grid axis relative to an
external cue) and the phase or spatial offset of their firing fields (Fig. 1a). Grid scale
has been shown to increase in discrete steps along the dorsoventral axis of mEC
(Fig. 1b; Barry et al. 2007; Stensola et al. 2012), and evidence suggests that grid cells
which share a common scale form a single functional module (Stensola et al. 2012;
Yoon et al. 2013). The scale, relative orientation and offset of grid firing patterns
within each module are generally conserved across environments (Fyhn et al. 2007),
aside from a transient expansion of grid scale in novel environments that returns to
baseline with experience (Barry et al. 2012a). The spatial phases of individual grid
cells are uniformly distributed across the environment but, importantly, the relative
spatial phase of any two simultaneously recorded grid cells from the same module
is also conserved across all environments visited by the animal (Fyhn et al. 2007;
Yoon et al. 2013).

Principal cells and interneurons in the rodent entorhinal cortex and hippocampus
are each modulated by a 5–12 Hz theta rhythm during movement (Vanderwolf 1969;
O’Keefe and Nadel 1978). Both the power (Vanderwolf 1969; McFarland et al.
1975) and frequency (McFarland et al. 1975; Rivas et al. 1996; Jeewajee et al.
2008) of theta oscillations increase with running speed. Importantly, the majority
of grid cells in layers II, V and VI of rodent mEC exhibit theta phase precession,
firing spikes at progressively earlier phases of the ongoing movement-related theta
rhythm as the grid firing field is traversed (Hafting et al. 2008; Reifenstein et al.
2012; Climer et al. 2013; Jeewajee et al. 2014; Reifenstein et al. 2014; Fig. 1c). This
theta phase precession appears to be independent of input from the hippocampus
(Hafting et al. 2008). Conversely, the majority of layer III grid cells exhibit theta
phase locking, firing spikes at the trough of the ongoing theta rhythm throughout
the firing field (Hafting et al. 2008; Climer et al. 2013). Interestingly, inactivation
of the medial septum, which abolishes the theta rhythm, also impairs grid cell firing
patterns while leaving head direction, border and place cell firing patterns unaffected
(Brandon et al. 2011; Koenig et al. 2011).

Grid cell firing patterns, like those of place cells, remain stable for a limited
period of time in the dark (Hafting et al. 2005). This, along with the fact that grid
firing patterns are preserved across all environments visited by the animal, has led to
the suggestion that grid cells perform path integration, updating their firing patterns
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Fig. 1 Properties of grid cells. (a) The grid cell firing rate code. Left panel: schematic of single
unit recording in the freely moving rodent. Middle left panel: the animal’s path through the
environment is indicated by the black line, and the locations at which action potentials were fired
by a single neuron in rodent mEC are superimposed in blue. Middle right panel: firing rate map
for the same mEC grid cell, with high firing rates indicated by hot colours and low firing rates
by cold colours. Right panel: the firing pattern of this mEC grid cell can be characterised by its
scale (the distance between any two adjacent firing fields), orientation (relative to some external
cue) and offset or spatial ‘phase’ (relative to some arbitrary point in the environment; adapted from
Bush et al. 2015). (b) Grid cells appear to be organised into discrete functional modules whose
scale increases in discrete steps along the dorsoventral axis of mEC (adapted from Barry et al.
2007). (c) The grid cell temporal code. As the animal crosses a grid firing field, spikes are fired
at successively earlier phases of the 5–12 Hz theta rhythm recorded from the local field potential
(LFP), resulting in a negative circular-linear correlation (red line) between the theta phase of firing
and progress through the grid field (adapted from Bush et al. 2015)

on the basis of self-motion information (Fuhs and Touretzky 2006; McNaughton
et al. 2006). Indeed, grid cell firing patterns are abolished when self-motion signals
are reduced by passive transport of the animal (Winter et al. 2015). However, grid
firing patterns of individual cells are also stable between visits to an environment
(Hafting et al. 2005; Fyhn et al. 2007), oriented to distal visual cues (Hafting et al.
2005), dependent on visual input (Chen et al. 2016; Pérez-Escobar et al. 2016) and
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rescale parametrically in response to the reshaping of a familiar environment (Barry
et al. 2007). This suggests that grid cell firing patterns become anchored to sensory
cues with experience, analogous to the reset of a path integration system by sensory
inputs to reduce integrated error where possible (Fuhs and Touretzky 2006; Evans
et al. 2016). In addition, theoretical studies have demonstrated that the grid cell
population provides a highly efficient code for location (Fiete et al. 2008) and may
be used for goal-directed navigation (Bush et al. 2015; Stemmler et al. 2015).

Recent evidence suggests that sensory inputs to grid cells may be mediated by
place and/or boundary cells (Langston et al. 2010; Wills et al. 2010; Bonnevie
et al. 2013; Hardcastle et al. 2015; Evans et al. 2016). For example, stable grid
cell firing patterns appear after stable head direction (HD), place and boundary cell
responses during development and several days after rats leave the nest and actively
explore their environment for the first time (Langston et al. 2010; Wills et al. 2010).
Similarly, inactivating the hippocampus – and thus eliminating place cell inputs
to mEC – impairs grid cell firing patterns (Bonnevie et al. 2013). Finally, it has
been demonstrated that grid cell firing patterns drift coherently during excursions
into the centre of an open-field environment and that this accumulated error is
eliminated by contact with environmental boundaries (Hardcastle et al. 2015). This
is complemented by the observation that environmental boundaries have a strong
influence on the orientation and ellipticity of grid cell firing patterns (Derdikman
et al. 2009; Krupic et al. 2015) that develops with experience (Stensola et al. 2015).
Each of these effects is likely to be mediated by input from boundary cells (Barry
et al. 2006; Savelli et al. 2008; Solstad et al. 2008; Lever et al. 2009).

The Models

Any computational model of grid cell firing patterns must account for the exper-
imental data described above while remaining faithful to the known neurobiology
of the medial entorhinal cortex. Ideally, such a model should replicate both the rate
and temporal code exhibited by grid cells – that is, generate both a triangular lattice
of spatial receptive fields and phase precession against an ongoing oscillation in the
local field potential. In accordance with their hypothesised role in path integration,
most models assume that the principal input to grid cells is a self-motion signal
corresponding to the animal’s velocity. However, to account for the stability of their
firing patterns relative to the environment, grid cells must also receive environmental
sensory inputs from place or boundary cells which may have an effect on those firing
patterns. Finally, the stability of grid firing patterns relative to one another, and their
modular organisation, also suggest that there are strong, local interactions between
grid cells in mEC.

A number of grid cell models that can account for some or all of these properties
have been proposed, each differing in how the animal’s location is encoded, updated
and decoded (reviewed by Giocomo et al. 2011; Zilli 2012). These models are not
mutually exclusive, however, and the properties of grid cells may best be accounted
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for by a ‘hybrid’ model that incorporates features from each class (Schmidt-Hieber
and Häusser 2013; Bush and Burgess 2014). Grid cell models can be broadly divided
into several principal classes. The first class are oscillatory interference (OI) models,
which hypothesise that grid cell firing patterns are formed at the single-cell level
by constructive interference (i.e. coincidence detection) among velocity-controlled
oscillator (VCO) inputs (Burgess et al. 2005, 2007; Blair et al. 2008; Burgess 2008;
Hasselmo 2008). The second class are continuous attractor network (CAN) models,
which hypothesise that grid cell firing patterns are generated at the network level
by local interactions characterised by a circular surround synaptic weight profile
(Fuhs and Touretzky 2006; McNaughton et al. 2006; Guanella et al. 2007; Burak
and Fiete 2009; Pastoll et al. 2013). Another class of models suggest that grid
cell firing patterns arise at the single-cell level as a result of spatially modulated
inputs from place cells, performing a process equivalent to principal component
analysis (PCA) on the spatial representation provided by the hippocampus (Kropff
and Treves 2008; Dordek et al. 2016). Finally, grid cell firing may emerge as a result
of a self-organising learning process (Mhatre et al. 2012).

Here, we describe neural network models of two of these major classes of grid
cell model, using either oscillatory interference or continuous attractor dynamics to
generate grid firing patterns, alongside an appraisal of their strengths, weaknesses
and relationship to experimental data. We then present a hybrid model that
incorporates features of each class in order to account for a wider array of the known
properties of grid cells. Finally, we provide suggestions for future experimental
studies that will help to further refine the biological validity of grid cell models,
and critical tests of each model.

The Oscillatory Interference Model

The oscillatory interference (OI) model was originally proposed to account for theta
phase precession in place cells (O’Keefe and Recce 1993; Lengyel et al. 2003). This
model proposes that grid firing patterns can be accounted for at the single-cell level
by constructive interference between two or more oscillatory inputs (Burgess et al.
2005, 2007; Blair et al. 2008; Burgess 2008; Hasselmo 2008). In its simplest 1D
form, one oscillator is assumed to have a constant baseline frequency, and the other
‘velocity-controlled oscillator’ (VCO) is assumed to have a frequency that varies
linearly with the speed of movement (Equation 1; Burgess 2008). In rodents, the
baseline frequency is generally assumed to be the 5–12 Hz movement-related theta
oscillation (Vanderwolf 1969; O’Keefe and Nadel 1978; Burgess et al. 2007).

Input from these two signals generates grid cell membrane potential oscillations
(MPOs) which are modulated by an ‘envelope’ frequency that is equal to the
difference in baseline and VCO frequencies and a ‘carrier’ frequency that is equal
to the mean of those two frequencies (Fig. 2a). The envelope corresponds to the grid
cell rate code, being spatially periodic and approximately Gaussian or cosine tuned;
while the carrier corresponds to the temporal code, being higher in frequency than
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Fig. 2 The oscillatory interference model. (a) In 1D, consider a baseline oscillation with
frequency fbase (red line) and a velocity-controlled oscillation (VCO) with a frequency fVCO
(green line) that varies linearly with movement speed. Constructive interference between these
two oscillations generates a spatially periodic activity pattern with a carrier frequency (blue)
equal to their mean frequency (fbase + fVCO)/2 and an envelope frequency (pink) equal to their
difference in frequency (fVCO – fbase). This activity pattern corresponds to spatially periodic,
approximately Gaussian firing fields (top) within which spikes are fired at progressively earlier
phases of the baseline oscillation (bottom), as observed in grid cells (following Blair et al. 2008).
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the baseline oscillation and thus causing the grid cell to fire at progressively earlier
phases of that baseline oscillation as the firing field is traversed (i.e. generating
phase precession; Fig. 2a). The scale of the resultant grid firing pattern is controlled
by the slope of the VCO movement speed/burst firing frequency relationship β,
which determines how quickly the VCO and baseline oscillation move in and out of
phase during movement.

vVCO(t) = s(t) cos (∅(t) − ∅VCO)

fVCO(t) = fbase + βvVCO(t)

Equation 1 The relationship between VCO burst firing frequency and movement
velocity. VCO burst firing frequency fVCO deviates linearly from the baseline
frequency fbase according to the component of movement velocity along the VCO’s
preferred direction vVCO, which is dictated by the absolute speed s and direction
∅ of the animal’s movement relative to the preferred direction of that VCO ∅VCO.
The scale of the resultant grid firing pattern is dictated by the slope of the linear
relationship between burst firing frequency and velocity, β.

The OI model can be extended to account for grid firing patterns in 2D by
incorporating input from multiple VCOs whose burst firing frequencies vary linearly
with movement speed along different preferred directions. Because distance is the
time integral of velocity, and phase is the time integral of frequency, the phase of
each VCO – if sampled at fixed intervals (i.e. at the peak or trough of the baseline
oscillation) – encodes (periodic) displacement in its preferred direction (Fig. 2b).
A grid cell that receives input from two or more VCOs whose preferred directions
differ by multiples of 60◦ will exhibit a triangular array of firing fields at locations
where those VCO inputs are in phase (Fig. 2b). The specific location or offset of
those firing fields can be manipulated by adding a constant phase shift to one or
more VCO inputs. Hence, the OI model proposes that each VCO performs path
integration along different one-dimensional axes, while grid cells simply ‘read-out’
the activity of multiple VCO inputs by firing whenever they are in phase (Fig. 2b).
Importantly, it is the phase difference between VCO and baseline oscillations that
encodes location, and the baseline oscillation can therefore take any frequency value
and need not be constant over time (Burgess 2008; Blair et al. 2014; Orchard 2015).

What is the source of these VCO inputs to grid cells? Early implementations of
OI grid cell models suggested that spontaneous independent intrinsic oscillations
in dendritic subunits, driven by animal velocity, may represent VCOs (‘intrinsic

�
Fig. 2 (continued) (b) Velocity-controlled oscillators (VCOs) with different preferred firing
directions ∅i encode periodic displacement along that direction in their firing phase. Combining
input from two or more VCOs with preferred firing directions that differ by multiples of 60◦ can
then account for the periodic firing fields exhibited by grid cells, which fire when their VCO inputs
are in phase. (Adapted from Bush and Burgess 2014)



592 D. Bush and C. Schmidt-Hieber

VCOs’; Burgess et al. 2007). This idea was inspired by the finding that mECII
stellate cells can produce spontaneous somatic membrane potential oscillations in
the theta frequency range (theta MPOs) when depolarised close to spike threshold
(Alonso and Llinas 1989). Moreover, the frequency of these MPOs, along with
several intrinsic membrane properties, shows a dorsal-ventral gradient (Giocomo
et al. 2007; Garden et al. 2008) that mirrors the parallel anatomical gradient in
grid spacing (Hafting et al. 2005). However, as biophysical modelling has revealed
that dendritic intrinsic MPOs will rapidly phase lock (Remme et al. 2010), more
recent OI model implementations assume that VCOs are represented by neurons
projecting to grid cells that display velocity-dependent theta-modulated firing
(‘external VCOs’; Burgess 2008; Welday et al. 2011; Schmidt-Hieber and Häusser
2013; Bush and Burgess 2014).

How can we predict membrane potential Vm and spike rate from an OI model of
grid cell firing? The simplest way is to analytically compute Vm for an OI model
neuron that receives input from n VCOs with preferred firing directions that differ
by multiples of 60◦, each oscillating at frequency fVCO, i (see Equation 1) according
to Equation 2.

Vm(t) =
n∏

i=1

[
cos (2πfbaset) + cos

(
2πfVCO,i (t)t

) + ϕi

]
+

Equation 2 Membrane potential of a grid cell simulated using the OI model. The
membrane potential Vm of the simulated grid cell at time step t is dictated by the
baseline frequency fbase, VCO burst firing frequency fVCO,i (see Equation 1) and
spatial phase offset of the ith VCO ϕi, with [x]+ = max{0, x} (Burgess et al. 2007;
Burgess 2008).

Figure 3a shows an example of the membrane potential Vm of a simulated grid
cell in a 2D environment generated by two VCO inputs with preferred directions
∅VCO, 1 = 0

◦
and ∅VCO, 2 = 60

◦
. Although two VCO inputs and a baseline

oscillation are sufficient to produce a hexagonal grid, more circular firing fields that
better approximate experimental recordings can be generated by six VCO inputs
with preferred firing directions that differ by multiples of 60◦ (Burgess et al. 2007).
This configuration is also necessary to produce omnidirectional phase precession
in 2D, if the firing rate of VCOs is directionally tuned such that VCOs only fire
spikes when movement velocity in their preferred direction is positive – i.e. when
the running direction does not exceed ∅VCO, i ± 90

◦
(Burgess 2008; Climer et al.

2013).
To obtain a more biophysically realistic estimate of grid cell activity, integrate-

and-fire neurons (Welday et al. 2011; Bush and Burgess 2014) or detailed compart-
mental modelling (Schmidt-Hieber and Häusser 2013) have been employed. These
implementations typically convert fVCO, i, which is continuous in time, into discrete
spike trains driving synaptic inputs to a model neuron. For example, discrete Poisson
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Fig. 3 Implementations of the oscillatory interference model. (a) In the simple implementation,
following Equation 2, the membrane voltage Vm of a simulated grid cell is generated by 2 VCO
inputs with preferred directions of ∅VCO, 1 = 0

◦
and ∅VCO, 2 = 60

◦
. (b) In a more detailed

implementation, Poissonian VCO spike trains, following Equation 3, are used as input to six
excitatory synapses (red circles) located on the distal dendrites of a compartmental stellate cell
model, while the baseline oscillation takes the form of an inhibitory conductance ginh applied
directly to the soma (blue circle). In both cases, the results shown here were generated by 90 linear
runs with s = 0.2 ms−1 from the bottom left corner to the opposing boundaries of a 2 m sided square
arena at angles spaced by 1◦. For further details, see Schmidt-Hieber and Häusser (2013); code
is available on ModelDB (accession number 150239). (c) Simulations demonstrate a discrepancy
between the predictions of the OI model and whole-cell recordings of grid cell membrane potential
in behaving animals (Schmidt-Hieber and Häusser 2013; Domnisoru et al. 2013). The OI model
predicts no change in the average membrane voltage of a grid cell (middle panel) as the firing
field is traversed (top panel) but does predict an increase in the amplitude of theta band membrane
potential oscillations (MPOθ ) as VCO inputs become synchronised in the centre of the firing field
(bottom panel). Conversely, experimental recordings indicate a sustained ‘ramp’ depolarisation that
mirrors the change in firing rate within the grid field, but no change in the amplitude of theta band
MPOs. (d) Simulations demonstrate that the predictions of the OI model are consistent with the
properties of phase precession described by whole-cell recordings of grid cell membrane potential
in behaving animals (Schmidt-Hieber and Häusser 2013; Domnisoru et al. 2013). The phases of
action potentials (APs) with respect to LFP theta (left), theta band MPOs with respect to LFP theta
(middle) and action potentials with respect to theta band MPOs (right) are plotted as a function
of normalised position within firing fields of stellate cells recorded intracellularly in vivo. Action
potentials show phase precession with respect to the LFP but are phase locked with MPOs. (e) The
compartmental model correctly predicts the experimental observations. (Panels d–e adapted from
Schmidt-Hieber and Häusser 2013)
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spike trains can be generated by computing the firing probability pVCO, i for VCOi

according to Equation 3, where the time step �t is chosen so that p � 1. Predictions
for the membrane voltage Vm and spike rate from a detailed compartmental model
are shown in Fig. 3b (adapted from Schmidt-Hieber and Häusser 2013). While
an isolated single-cell OI model fails to reproduce the experimentally recorded
membrane potential ramps during firing field crossings (Fig. 3c), it can account
for the observed phase precession phenotype, with both action potentials and theta
membrane potential oscillations showing phase precession with reference to LFP
theta (Fig. 3d, e).

pVCO,i (t, t + �t) = rVCO
[
cos

(
2πfVCO,i (t)t + ϕVCO,i

) + 1
]
�t

Equation 3 Simulated VCO spike train in the OI model of grid cell firing. The
probability of an input spike in time step t is dictated by VCO mean firing frequency
rVCO, burst firing frequency fVCO,i (see Equation 1), the spatial phase of that VCO
input ϕVCO, i and length of the time step �t. Firing probability is converted to input
spikes by drawing a random number r from the interval [0, 1] for each time step. A
spike is produced if r ≤ p.

Critique of the Oscillatory Interference Model

The OI model accounts for both the rate and temporal firing patterns of grid
cells – that is, it generates both hexagonally arranged firing fields and phase
precession. In accordance with the OI model, grid cell burst firing frequency has
been shown to increase with running speed (Jeewajee et al. 2008) and decrease
in novel environments, when grid scale expands (Barry et al. 2012a; Wells et al.
2013). Moreover, cells with VCO-like properties have been identified in and around
the entorhinal cortex (Welday et al. 2011); gridness scores correlate with spike train
theta rhythmicity (Boccara et al. 2010); and grid cell firing patterns are impaired
when theta power is reduced by inactivation of the medial septum (Brandon et al.
2011; Koenig et al. 2011) or when the influence of running speed on theta frequency
is abolished by passive transport of the animal (Winter et al. 2015).

The OI model has recently been challenged by the finding that grid cell
firing patterns in crawling bats exist in the absence of a continuous theta rhythm
(Yartsev et al. 2011, but see Barry et al. 2012b). Similarly, continuous low-
frequency oscillations are rarely observed in the human hippocampal formation
during virtual navigation tasks (Ekstrom et al. 2005; Jacobs et al. 2013; Watrous
et al. 2013). However, it is important to note that the OI model functions equally
well with a baseline oscillation of any frequency, which need not be constant
over time, as integrated displacement is encoded in the phase difference between
baseline and VCO oscillations – irrespective of the absolute phase or frequency of
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either oscillation (Burgess 2008; Blair et al. 2014; Orchard 2015). Indeed, several
computational models of grid cells effectively make use of oscillatory interference
with a baseline frequency of 0 Hz, in which case each VCO is equivalent to a non-
oscillating ‘stripe’ or ‘band’ cell (Mhatre et al. 2012; Horiuchi and Moss 2015).
Moreover, recent recordings from bats have revealed that, despite a lack of clear LFP
rhythmicity, neurons still exhibit phase precession with respect to broadband low-
frequency oscillations in the non-rhythmic LFP (Eliav et al. 2015). These data can
be accounted for by an OI model with a baseline oscillation that varies dynamically
over a wide range. Hence, the absence of any clear, sustained oscillatory activity in
the LFP or grid cell spike train is not sufficient to disprove the OI model.

The OI model has also been criticised as being particularly susceptible to noise in
the burst firing frequency of VCO inputs (Welinder et al. 2008). However, the phase
precession of grid and place cell firing demonstrates that oscillations with the precise
timing required to generate grid cell firing patterns by oscillatory interference do
exist in the rodent hippocampal formation (O’Keefe and Recce 1993; Hafting
et al. 2008). It is well known that grid firing patterns – like any hypothetical
path integration system – will rapidly accrue error over time in the absence of
sensory inputs (Hafting et al. 2005; Evans et al. 2016). Theoretical studies have
demonstrated that input from place or boundary cells is sufficient to stabilise grid
firing patterns in the face of phase noise (Bush and Burgess 2014). Similarly, the OI
model has been criticised for relying on the preferred direction of VCO inputs to a
grid cell being separated by multiples of 60◦, but theoretical studies have shown that
such inputs may be selected by a Hebbian learning mechanism during development
as they most frequently co-occur in space (Burgess et al. 2007; Mhatre et al. 2012)
and therefore offer optimal noise reduction (Burgess and Burgess 2014).

The OI model cannot, however, account for the relative stability of grid cell
firing patterns within a module (Yoon et al. 2013). Oscillatory interference is a
single-cell model and makes no comment on potential interactions between grid
cells, while experimental evidence demonstrates that grid cell firing patterns from
the same functional module are tightly coupled, responding coherently to changes
in a familiar environment and maintaining their relative spatial phase between
environments (Hafting et al. 2005; Barry et al. 2007; Fyhn et al. 2007; Stensola
et al. 2012; Yoon et al. 2013). Organising VCO inputs into ring attractor circuits
provides some stability between firing patterns of different grid cells (Blair et al.
2008) but overlooks the functional consequences of the known synaptic interactions
between grid cells. Similarly, the observations of an in-field ‘ramp’ depolarisation
in grid cell subthreshold membrane potentials, as well as the lack of increase in
in-field theta amplitude, are not consistent with an OI model (Fig. 3c; Domnisoru
et al. 2013; Schmidt-Hieber and Häusser 2013). Hence, some modification of the
model or additional mechanism is required to account for both interactions between
grid cells within each functional module, and the subthreshold membrane potential
dynamics of grid cells recorded in vivo.
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Fig. 4 The continuous attractor network model. (a) A sheet of topographically arranged neurons
(left panel) are connected by disynaptic inhibitory projections with a circular surround profile
(right panel), such that neurons which are proximate on the neural sheet inhibit each other. In the
multiple bump CAN model, uniform excitatory input to such a network generates a grid firing
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Continuous Attractor Network Models

Continuous attractor network (CAN) models were originally proposed to account
for the properties of head direction (Zhang 1996) and place cells (Samsonovich
and McNaughton 1997; Conklin and Eliasmith 2005). This class of model proposes
that spatially modulated firing patterns can be accounted for by local, recurrent
interactions among cells (Fuhs and Touretzky 2006; McNaughton et al. 2006;
Guanella et al. 2007; Burak and Fiete 2009). The requisite recurrent connectivity
is characterised by a circular, centre-surround synaptic weight profile on a topo-
graphically arranged sheet of neurons (Fig. 4a). In the case of grid cells, this implies
that the strength of synaptic connections between cells decreases as a function
of the distance between their firing fields (i.e. the difference in spatial phase).
This establishes cooperation between grid cells with similar spatial phase, and
competition between grid cells with different spatial phases (Fuhs and Touretzky
2006). Note that grid cells need not be topographically arranged in the actual brain,
this formalism is introduced purely to aid visualisation (but see Heys et al. 2014;
Naumann et al. 2015).

As direct recurrent excitatory connections between grid cell candidate neurons
in mECII are sparse, recurrent connectivity in most CAN model implementations
is mediated by disynaptic inhibition from interneurons, which have been shown to
densely innervate mECII principal neurons (Dhillon and Jones 2000; Couey et al.
2013; Pastoll et al. 2013; Fuchs et al. 2016). Uniform excitatory input to such a
network will generate one or more stable activity packets or ‘bumps’, and self-
motion information can then be used to translate the position of this activity packet
across the neural sheet in accordance with the animal’s movement in the real world.

�
Fig. 4 (continued) pattern, as activity bump(s) form at the triangular array of inhibitory minima
produced by close packing of the circular connectivity profile. In the single-bump CAN model,
not illustrated here, a single activity bump forms at an arbitrary location on the neural sheet.
Note that neurons need not be topographically arranged in the actual brain. (b) The location of
the(se) activity bump(s) can be shifted by asymmetric interactions between grid cells. For example,
if conjunctive grid cells, whose firing rate is modulated by movement direction, have recurrent
inhibitory connections that are skewed along their preferred firing direction, then their activity
will create inhibitory minima just ahead of the activity bump(s) in that direction on the neural
sheet. The activity bump(s) will subsequently move across the neural sheet, tracking the animal’s
movement in the real world. A mixture of conjunctive grid cells with different preferred firing
directions can therefore both establish and shift the grid firing pattern in any direction (following
Burak and Fiete 2009). (c) To account for smooth changes in grid cell firing over large distances,
a periodic continuous attractor network must adopt a twisted torus topology, such that movement
along orientations that differ by multiples of 60◦ will return the activity bump to its original location
on the sheet of cells once some integer number of grid scales have been travelled. Hence, if a grid
cell is active at some location in the real world (red circle, left panel), then it will also be active at
a fixed distance equal to the grid scale along any grid axis. Similarly, if an activity bump is located
over some grid cell on a neural sheet that exhibits a twisted torus topology (red sphere, right panel),
then movement of a fixed distance equal to the grid scale along any grid axis will return the activity
bump to its original location (adapted from Bush et al. 2015)
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The majority of CAN models suggest that the activity bump is shifted by asymmetric
interactions between grid cells in the neural sheet. This can be achieved by rate-
coded input from conjunctive grid × movement direction cells, which have also
been identified in the deeper layers of mEC (Sargolini et al. 2006). If the recurrent
inhibitory input from these conjunctive cells to other cells in the network is shifted
along the axis of their preferred firing direction, then their firing will shift the activity
bump in the movement direction (Fig. 4b).

In the case of a single activity bump, the network must exhibit a twisted torus
topology, such that movement of a set distance in a direction corresponding to
any multiple of 60◦ across the neural sheet will return it to its original position,
thus accounting for the hexagonal symmetry of the grid firing pattern in the real
world (Fig. 4c; Guanella et al. 2007; Pastoll et al. 2013). In the case of multiple
bumps, the circular weight profile dictates that the location of activity bumps on the
neural sheet exhibit sixfold symmetry through circular close packing. To ensure
that activity bumps smoothly appear and disappear at the edges of the neural
sheet, either periodic boundary conditions are imposed (which places constraints
on the dimensions of the neural sheet), or alternatively the synaptic weights (Fuhs
and Touretzky 2006) or feedforward synaptic inputs (Burak and Fiete 2009) are
smoothly modulated to zero towards the edges of the neural sheet. Importantly,
population activity is constrained by the synaptic connections between neurons
such that grid cell firing patterns can only ever encode a single location at any
time. Hence, grid cells in the continuous attractor network effectively perform path
integration, tracking the animal’s location by integrating self-motion signals.

An influential rate-based implementation of a multiple bump CAN model was
proposed by Burak and Fiete (2009). In this model, each neuron i is arranged on a
rectangular sheet and assigned one of four preferred directions (∅i=0◦, 90◦, 180◦,
or 270◦). Typical sizes of the neuronal sheet range from 40 × 40 to 256 × 256
neurons – larger networks provide higher integration accuracy (Burak and Fiete
2009). The neuronal dynamics of each simulated grid cell are described by Equation
4, where ri is the firing rate of neuron i, τ is the integration time constant, Ri are
recurrent inputs and Bi are feedforward inputs. Recurrent inputs Ri are equal to
the sum of all presynaptic firing rates rj multiplied by the corresponding recurrent
synaptic weights wij.

τ
dri

dt
+ ri = [Ri + Bi]+

Ri =
∑

j

wij rj

Equation 4 Firing rate dynamics of a grid cell simulated using the CAN model.
The firing rate ri of neuron i is dictated by the time constant τ , recurrent input Ri

and feedforward inputs Bi, with [x]+ = max{0, x}. Recurrent inputs are equal to
the sum of all presynaptic firing rates rj multiplied by the corresponding recurrent
synaptic weights wij (Burak and Fiete 2009).
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The strength of recurrent inputs wij depends on the distance between the 2D
positions xi and xj of pre- and postsynaptic neurons j and i on the neuronal sheet and
is shifted by a vector l̂uφj

, where ûφj
is a unit vector in the preferred direction ∅j

and l defines the amplitude of the shift (typically, a small number, e.g. two neurons;
Equation 5). The dependence of this shift on ∅j, the preferred direction of the
presynaptic neuron, indicates that it is applied to the outgoing weights. The centre-
surround synaptic weight matrix W0 classically takes the shape of a ‘Mexican hat’,
with excitation dominating the centre and inhibition forming a brim in the periphery
(Fuhs and Touretzky 2006). This can be generated as a difference of Gaussians
(Equation 5), where a defines the amplitude and γ the width of the excitatory centre
and κ determines the width of the inhibitory brim.

In the original implementation, the recurrent weight matrix was purely inhibitory
(using a = 1). Interestingly, this implementation was suggested before detailed
analysis of the functional connectivity in mECII revealed that direct excitatory
recurrent connections between principal cells are sparse or lacking (Couey et al.
2013; Pastoll et al. 2013; Fuchs et al. 2016). Following more detailed analysis of
the connectivity between mECII stellate cells, variations of the centre-surround
connectivity matrix with steep edges that resemble a frying pan or ‘Lincoln Hat’
have also been used in CAN models (as illustrated in Fig. 4; Couey et al. 2013).

wij = f
(
xi − xj − l̂uφj

)

f (x) = ae−γ |x|2 − e−κ|x|2

Equation 5 Recurrent synaptic weight profile in the CAN model of grid cell
firing. The strength of recurrent connectivity wij between presynaptic neuron j and
postsynaptic neuron i is a function of the distance between their 2D locations xi

and xj on the neural sheet and is skewed along the preferred direction ∅j of the
presynaptic neuron according to the product of a constant l and unit vector in that
direction ûφj

. In canonical implementations of the CAN model, synaptic weights
follow a ‘Mexican hat’ profile, consisting of excitatory projections to proximate
neurons and inhibitory projections to more distant neurons on the neuronal sheet.
This can be generated by a difference of Gaussian distributions, where a defines the
amplitude of synaptic weights and γ and κ control the width of the excitatory and
inhibitory components, respectively.

Finally, feedforward inputs in the CAN model Bi are modulated by the animal’s
running direction, as defined by Equation 6, where v is the animal’s velocity and
α determines the amplitude of the directional modulation of feedforward input.
Hence, coupling of network activity to the animal’s trajectory is realised through
the combination of two mechanisms: a neuron receives more feedforward input
if the animal is running in its preferred direction (Equation 6); and the outgoing
weights of each neuron are shifted by a small number of neurons along that preferred
direction (Equation 5). As a consequence, if the animal is running in a certain
direction, neurons that prefer this direction (or components of this direction) will be
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activated by their feedforward input and can then impose a shift in network activity
towards their preferred direction. In contrast, neurons with preferred directions that
point away from the running direction will receive less feedforward input, and their
outgoing weights, which are shifted in the opposite direction, will be less effective.
Importantly, attractor dynamics ensure that the firing rate of these cells may not be
significantly modulated by running direction (Bonnevie et al. 2013), such that they
would not be classed as conjunctive cells if recorded experimentally (Sargolini et al.
2006).

Bi = 1 + αûφi
· v

Equation 6 Directionally modulated external input in the CAN model of grid cell
firing. In order to shift the activity bump in concert with the animal’s movement in
the real world, external input to a simulated grid cell is modulated by the velocity
of movement v multiplied by a unit vector û in the preferred direction ∅j of that
grid cell and a positive constant α. The outgoing synaptic weight profile of each
grid cell is also skewed along the preferred firing direction (Equation 5), creating
an inhibitory minimum adjacent to the activity bump in that direction on the neural
sheet.

The Burak and Fiete (2009) multiple bump CAN model shown in Fig. 5a is
particularly efficient as it can be implemented as a convolutional neural network
of rate-based or simple spiking neurons where, instead of computing the input
to each neuron separately, network activity is convolved with the synaptic weight
matrix in a single step. A more biophysically realistic single-bump implementation
using separate layers of excitatory and inhibitory integrate-and-fire neurons has also
been shown to produce theta-nested gamma oscillations in model grid cells (Pastoll
et al. 2013). CANs consisting of detailed compartmental neurons have not yet been
implemented, as simulating several minutes of grid cell firing in a network of >1000
model neurons is computationally prohibitive at this time. A simplified approach
can be taken, however, where synaptic input rates are first derived from one of the
rate-based model neurons and then fed into a single compartmental model neuron
in a separate simulation (Schmidt-Hieber and Häusser 2013; Fig. 5b). For example,
probabilities of firing for excitatory and inhibitory inputs can be derived from one
of the rate-based model neurons (according to Pexc(t, t + �t) = f (Bi)�t and Pinh(t,
t + �t) = f (−Ri)�t, respectively) and used to generate Poisson input spike trains
driving excitatory and inhibitory synaptic conductances in a compartmental model,
similar to the approach described in Equation 3.

Critique of the Continuous Attractor Network Model

The CAN model can readily account for the modular organisation of grid cells
(Barry et al. 2007; Stensola et al. 2012), and strong functional interactions between
grid cells from within the same module in both 1D and 2D environments (Yoon



Computational Models of Grid Cell Firing 601

b Compartmental modelSimple modela

0.0 0.4

si

128

0
1280

0.0AU 0.4AU

In
pu

t (
A

U
)

0

−1

1

1 m

0 Hz 10 Hz

1 s

−2

−60

−50

V
m

(m
V

)

1 m

CAN model
Experiment

0

1

F
iri

ng
ra

te
(n

or
m

.)

0 1
Distance (norm.)

0

2

M
P

O
q

(m
V

)
V

m
 (

m
V

)

−60

−57

−54

4

C

Network activity Single-cell activity

Neuron #

N
eu

ro
n 

#

Fig. 5 Implementations of the continuous attractor network model. (a) In the simple implemen-
tation, 1282 rate-based neurons are arranged on a neural sheet with periodic boundary conditions
and Mexican hat connectivity as described by Equation 5. The left panel shows activity of each
neuron in network space at a given moment in time. Note the periodic activity bumps that form
spontaneously in the network. The right panel shows a colour-coded spatial map of the activity of
an individual neuron averaged across time during simulated navigation within a square-shaped
environment. (b) In a more detailed implementation, the probabilities of excitatory (red) and
inhibitory (blue) input spikes in each time step are derived from the simple rate-based model
in (A) and used to generate input to a compartmental stellate cell model. For further details see
Schmidt-Hieber and Häusser (2013); code is available on ModelDB (accession number 150239).
(c) Simulations demonstrate that the predictions of the CAN model closely match whole-cell
recordings of grid cell membrane potential in behaving animals (Schmidt-Hieber and Häusser
2013; Domnisoru et al. 2013). The CAN model predicts a ramped depolarisation of the grid cell
membrane voltage (Vm; middle panel) as the firing field is traversed (top panel), but no change
in the amplitude of theta band membrane potential oscillations (MPOθ ) across the firing field.
However, the CAN model does not account for the theta modulation or phase precession of grid
cell firing (data not shown). Panels B-C adapted from Schmidt-Hieber and Häusser 2013

et al. 2013, 2016). For example, the coherent shift in firing field orientation (Hafting
et al. 2005; Fyhn et al. 2007) and rescaling (Barry et al. 2007, 2012a; Stensola et al.
2012) of simultaneously recorded grid cells from the same module in 2D suggest
that these are functionally coupled. In addition, instabilities in grid cell activity over
time apparently correspond to drifts in a stable grid firing pattern relative to the
environment, as opposed to corruption of the grid firing pattern itself, consistent
with a CAN model (Hardcastle et al. 2015; Chen et al. 2016; Perez-Escobar et al.,
2016).

The CAN model predicts the observed ramp depolarisation of grid cells in their
firing field (Fig. 5c; Domnisoru et al. 2013; Schmidt-Hieber and Häusser 2013; Bush
and Burgess 2014). Moreover, it has been demonstrated that stellate cells in mEC
exhibit extensive recurrent inhibitory circuitry (Dhillon and Jones 2000; Couey
et al. 2013; Fuchs et al. 2016) that is, in principle, sufficient to mediate continuous
attractor dynamics (Burak and Fiete 2009; Pastoll et al. 2013; Shipston-Sharman
et al. 2016). In addition, inhibitory inputs to stellate cells in mEC appear around the
same time point during development as stable, adult-like grid cell firing patterns
(Langston et al. 2010; Wills et al. 2010; Couey et al. 2013). Recent theoretical
studies have demonstrated how this recurrent synaptic connectivity might be learned
in an unsupervised manner (Widlowski and Fiete 2014), although it is also possible
that some other mechanism is responsible for the initial generation of grid firing
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patterns (McNaughton et al. 2006; Burgess et al. 2007; Kropff and Treves 2008;
Bush and Burgess 2014; Dordek et al. 2016). Finally, cells with conjunctive grid ×
head direction responses, which are required to shift the activity bump in traditional
CAN models, have been identified in the deeper layers of mEC (McNaughton et al.
2006; Sargolini et al. 2006; Navratilova et al. 2012). Similarly, the directionally
modulated firing patterns exhibited by grid cells when excitatory drive to mEC is
reduced by inactivation of the hippocampus are consistent with later CAN models
(Bonnevie et al. 2013).

Implementations of CAN models with inhibitory disynaptic recurrent connec-
tivity predict that silencing inhibitory interneurons in the mEC should eliminate
grid cell firing patterns and that the same interneurons should exhibit spatially
modulated firing patterns, as they are driven by input from grid cells (Pastoll et al.
2013; Bush and Burgess 2014). To date, it has been demonstrated that the firing
patterns of parvalbumin-positive interneurons in mEC, which have strong, recurrent
connections with grid cells, tend to show low spatial selectivity and gridness scores
and that these interneurons receive input from grid cells with a wide range of
spatial phases (Buetfering et al. 2014). This raises the question of whether they
can support continuous attractor dynamics in the grid cell population. Nonetheless,
several other classes of interneurons in the local circuits of mEC could be used
to support continuous attractor dynamics, and further experiments are required to
ascertain whether those neurons exhibit spatially modulated firing patterns or are
necessary to support grid cell activity. Moreover, recent theoretical studies have
demonstrated that adding spatially uncorrelated noise input to inhibitory neurons in
a spiking CAN model (Pastoll et al. 2013) reduces spatial selectivity and impairs
grid firing patterns in the interneuron population without compromising those in
excitatory cells (Solanka et al. 2015).

Despite this wealth of evidence in support of attractor dynamics in grid cell firing
patterns, very few CAN models of grid cell firing can account for theta modulation
or phase precession. Those that do rely on subthreshold currents both to maintain
the position of the activity bump between theta cycles (Pastoll et al. 2013) and to
account for the temporal code of grid cell firing (Navratilova et al. 2012). This
solution becomes problematic during periods when the animal is stationary, and
grid cells are temporarily inactive or represent distant locations (Ólafsdóttir et al.
2016). As CAN models encode path integration information in the location of the
activity bump, some mechanism must reinstantiate that activity bump in the same
location within the network when the animal starts to move again and grid cell firing
resumes. In familiar environments, theoretical studies have demonstrated that place
or boundary cell input can eliminate drift of the attractor bump over time (Fuhs and
Touretzky 2006; Guanella et al. 2007; Pastoll et al. 2013; Hardcastle et al. 2015).
In novel environments, however, where the associations between grid, place and
boundary cell responses have not been learned, there is no obvious solution to this
problem.

It is also important to consider that grid firing patterns and phase precession
may be functionally independent phenomena. For example, grid cells in layer III of
the rodent mEC exhibit a triangular array of firing fields without phase precession,



Computational Models of Grid Cell Firing 603

spike times instead being phase locked to the trough of the ongoing theta oscillation
(Hafting et al. 2008; Climer et al. 2013; Jeewajee et al. 2014). This raises the
possibility that models of grid cell firing need not account for phase precession.
However, these data also indicate that the firing of layer III grid cells follows that
of layer II grid cells within each theta cycle, suggesting that they may inherit grid
firing patterns from generative mechanisms in the more superficial layer (Hafting
et al. 2008). In addition, there are – to date – no experimental manipulations that
can eliminate grid cell phase precession without also eliminating grid firing patterns,
indicating that the two phenomena may be co-dependent.

A Hybrid Grid Cell Model

The simulations and discussion above illustrate weaknesses in both the OI and CAN
models – primarily, that the OI model fails to account for functional interactions
between grid cell firing patterns or the subthreshold ramp depolarisation of grid cells
in their firing fields and the CAN model fails to account for the phase precession
of grid cell firing in the absence of an additional mechanism. In light of this, it
is important to note that these two classes of grid cell model are not mutually
exclusive – they each account for different properties of grid firing patterns using
different mechanisms and can therefore be reconciled within a single ‘hybrid’ model
(Burgess et al. 2007; Zilli 2012; Schmidt-Hieber and Häusser 2013; Bush and
Burgess 2014). We now describe such a model, which makes use of continuous
attractor dynamics to ensure relative stability among the firing patterns of grid cells
from within the same module and produce subthreshold ramp depolarisation within
firing fields, while oscillatory interference is used to shift the activity bump, generate
phase precession and store path integration information in VCO phases between
theta cycles and when the grid cell network is inactive.

In this implementation, grid cells are modelled as leaky integrate-and-fire

neurons with a membrane time constant of τm = cm
/

gm
(Equation 7). Simulated

neurons integrate current input I(t) until the membrane potential Vm reaches a
threshold Vt, at which point a spike is fired and the membrane potential is reset
to Vreset.

dVm

dt
= 1

cm
(I (t) − gm (Vm − Vl))

Equation 7 The leaky integrate-and-fire neuron model. The membrane potential
Vm of a simulated neuron is dependent on the membrane capacitance cm, membrane
conductance gm, applied current I and leak reversal potential Vl.

Grid cells receive synaptic input with fixed strength wVCO from six populations
of inhibitory VCOs that are arranged in ring attractor circuits (Blair et al. 2008;
Welday et al. 2011; Bush and Burgess 2014). VCOs in each ring attractor circuit
share a single preferred firing direction ∅VCO but differ in their initial phase ϕVCO.
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To generate hexagonal grid-like firing patterns, the preferred firing directions of each
VCO ring attractor circuit differ by multiples of 60◦; and to produce evenly spaced
grid fields, the initial phase of VCOs within each ring attractor circuit are uniformly
distributed among Noffset values. To produce more realistic membrane dynamics in
the grid cell population by increasing the number of inputs, NVcopy copies of each
VCO input (i.e. combination of preferred firing direction and phase) are used.

The burst firing frequency of VCO inputs fVCO increases linearly above a
constant baseline oscillation frequency of fbase=8 Hz according to movement speed
in the preferred direction (as described by Equation 1). Each VCO input produces
an inhomogeneous, inhibitory Poissonian spike train only when movement speed in
the preferred direction vVCO is positive, with the probability p(n, t) of firing n spikes
in time step t described by Equation 8.

p (n, t) = λn
VCO(t)e−λVCO(t)

n! H [vVCO]

λVCO(t) = rVCO (cos (2πfVCO(t)t + ϕVCO) + 1)�t

Equation 8 Simulated VCO input spike train in the hybrid model of grid cell firing.
The probability of a VCO input firing n spikes in time step t is dictated by the rate
function λVCO, where H[x] = 0 for x < 0 and H[x] = 1 for x ≥ 0. The rate function
is, in turn, dictated by the mean VCO firing rate rVCO, burst firing frequency fVCO
(see Equation 1), spatial phase offset of that VCO input ϕVCO and length of the time
step �t.

Each grid cell in the hybrid network model is recurrently connected to a
population of inhibitory interneurons that are also modelled as integrate-and-fire
neurons according to Equation 7. All NGcopy grid cells that share a spatial phase
send excitatory synapses with strength wGC to a unique subpopulation of NIcopy
interneurons, which subsequently exhibit grid firing patterns with the same spatial
phase. This interneuron subpopulation sends reciprocal projections with strength
wINH to the entire grid cell population with synaptic weights that are a cosine-
tuned function of their difference in spatial phase to create a ‘twisted torus’ topology
(Fig. 4c). Finally, to elicit firing, grid cells receive a tonic excitatory current Iexc(t)
that is drawn randomly from a Gaussian distribution with mean Iexc and standard
deviation σ exc at each time step.

Simulations of the hybrid model demonstrate that it can produce periodic,
grid-like firing patterns in one- or two-dimensional environments (Fig. 6). In
addition, theta phase precession of firing is observed as each grid field is traversed
(Fig. 6b(v)). Moreover, the combination of rhythmic VCO input and recurrent
inhibition can account for the experimentally observed pattern of subthreshold
membrane potential dynamics (Domnisoru et al. 2013; Schmidt-Hieber and Häusser
2013). First, recurrent inhibition hyperpolarises grid cells outside of their fir-
ing fields, generating a slow, ramped depolarisation on entry to the firing field
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Fig. 6 A hybrid oscillatory interference (OI) and continuous attractor network (CAN) model
(adapted from Bush and Burgess 2014). (a) Simulations of the hybrid OI/CAN model in a 1m2

2D arena. VCO inputs determine the location of the activity bump and integrate movement over
time, thereby shifting its location according to self-motion. Synaptic interactions between grid
cells couple their firing patterns, providing relative stability. (i) Path taken by the animal (grey)
and the location of spikes fired by a typical grid cell (red), (ii) smoothed firing rate map and (iii)
smoothed spatial autocorrelation. (b) Simulations of the hybrid OI/CAN model on a 1D track. (i)
Mean grid cell firing rate, (ii) membrane potential of a typical grid cell, (iii) mean low-frequency
(<3 Hz) ‘ramp’ amplitude in the membrane potential, (iv) mean 5–11 Hz theta amplitude in the
membrane potential and (v) phase of firing relative to LFP theta. In- (light grey background) and
out-of-field (dark grey background) regions are used to compute mean ramp depolarisation and
theta band MPO amplitude inside (red dashed line) and outside (blue dashed line) grid firing fields.
The hybrid model predicts a ramped depolarisation of the grid cell membrane voltage as the firing
field is traversed, and no change in the amplitude of membrane potential oscillations (MPO) across
the firing field, in line with experimental data (Domnisoru and Tank 2013; Schmidt-Hieber and
Häusser 2013)
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(Fig. 6biii). Second, recurrent inhibition is theta modulated – as it is driven by active
grid cells with theta-modulated firing – and so there is no significant difference
in membrane potential theta amplitude in and out of the grid firing field, where
subthreshold theta oscillations are driven by VCO inputs and recurrent inhibition,
respectively (Fig. 6b(iv); see Bush and Burgess 2014, for more details).

Critique of the Hybrid Model

The hybrid model can account for a wide range of experimental data, including
both the rate and temporal firing pattern of grid cells, the relative stability of grid
cell firing patterns from the same module, and the subthreshold ramp depolarisation
of grid cells inside the firing field. However, the hybrid model also exhibits
some weaknesses. Firstly, it offers no explanation for the function of conjunctive
cells in the deeper layers of mEC, or for the directional modulation of grid cell
firing patterns when excitatory drive from the hippocampus is reduced, as the
population activity bump is shifted by input from VCOs. It is possible that redundant
mechanisms exist for path integration and both conjunctive cells or grid cells with
directionally modulated input and VCOs are capable of updating grid cell firing
during movement. Intriguingly, the majority of conjunctive cells do not show phase
precession, suggesting that their firing patterns may be accounted for by a different
mechanism (Climer et al. 2013). In its current form, then, the hybrid model predicts
that silencing conjunctive cells should have no effect on grid firing patterns but
that silencing VCO inputs should prevent the grid firing pattern from being updated
during movement.

Secondly, the hybrid model – like all other CAN models – predicts that
interneurons in circuits local to grid cell populations should exhibit spatially
modulated firing patterns and that silencing those interneurons should impair grid
firing patterns. As described above, it has been demonstrated that parvalbumin-
positive inhibitory cells in mEC – which are strongly, recurrently connected to
grid cells – show low spatial selectivity and low gridness scores and receive input
from grid cells with a wide range of spatial phases (Buetfering et al. 2014). This
suggests that this class of interneurons may not be able to support continuous
attractor dynamics, although several other classes of interneurons exist in mEC and
further experiments are required to ascertain their firing patterns and relationship to
grid cell activity (Solanka et al. 2015). In addition, because grid cells in the hybrid
model – unlike the majority of previous CAN models – exhibit phase precession, the
interneurons that support continuous attractor dynamics should also exhibit phase
precession (Bush and Burgess 2014). Whether interneurons in mEC exhibit this
temporal code has yet to be established.

Finally, the hybrid model presented here also fails to account for sensory inputs
to the grid cell network, which are likely to be important for reducing accumulated
error during path integration (Fuhs and Touretzky 2006; Pastoll et al. 2013; Bush and
Burgess 2014; Evans et al. 2016). Such inputs are straightforward to incorporate
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into the model, however, by allowing the unsupervised learning of excitatory
connections from place or boundary cells to grid cells. It is interesting to note
that this spatially modulated input might, in familiar environments, be sufficient
to produce a subthreshold ramp depolarisation in grid cells (Domnisoru et al. 2013;
Schmidt-Hieber and Häusser 2013) and correlations in spike-timing at very short
time lags between grid cells with similar spatial phases (Tocker et al. 2015).

The Future

Current experimental and theoretical data highlight several outstanding questions
that are critical to the development of the next generation of grid cell models.
First, both OI and CAN models assume that the primary function of grid cells is
path integration and thus that grid firing patterns should primarily be accounted
for by self-motion information. However, experimental evidence in support of this
key assumption is currently lacking. Second, the effect of optogenetically silencing
inhibitory interneurons in mEC on grid cell firing patterns should provide evidence
either for or against the assumption, made by CAN models, that grid firing patterns
are generated by recurrent inhibitory interactions between grid cells. Similarly, it
would be of great interest to ascertain whether grid cells in other species, and
in the rodent pre- and para-subiculum, exist within microcircuits of a similar
structure or whether it is possible that independent mechanisms for generating
grid firing patterns have evolved in disparate cortical and phylogenetic loci. Third,
any mechanism that accounts for the existence of grid cell firing patterns must
also provide some explanation for the sudden appearance of stable, adult-like grid
cell responses in the rodent mEC during development. Fourth, optogenetic and
juxtacellular recording techniques could shed light on the relationship between grid
firing patterns in reelin-positive stellate (or ‘ocean’) cells and calbindin-positive
pyramidal (or ‘island’) cells in mEC and how this relationship constrains the
mechanism that generates grid firing patterns in each of these cell types across
development.

Finally, most network-level models of grid cell firing assume that the individual
rate-based or integrate-and-fire model neurons have uniform integrative properties
and perform simple linear transformations of synaptic inputs into action potential
output (Equation 4). However, grid cell candidate neurons in mEC express a rich
repertoire of active nonlinear conductances, some of which are tuned to their
functional grid cell properties (reviewed in Pastoll et al. 2012; Schmidt-Hieber
and Häusser 2014; Schmidt-Hieber and Nolan 2017). Moreover, the functional
distribution of synaptic inputs on the dendritic tree of grid cells may strongly affect
how signals are integrated and transformed into action potential output. Imaging
and electrophysiological studies suggest an important function for active dendritic
conductances in the generation of place fields in CA1 (Lee et al. 2012; Bittner et al.
2015; Sheffield and Dombeck 2015). Similarly, active dendrites may improve the
robustness and precision of the rate and temporal codes of grid cells, suggesting an
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important role for nonlinear integration in the computation performed by grid cells
(Schmidt-Hieber et al. 2017).

It is important to note that current experimental data also presents several
challenges to all current models of grid cell firing patterns. First, distortions of the
grid pattern close to environmental boundaries (Krupic et al. 2015; Stensola et al.
2015) present an issue to any model that accounts for grid cell firing patterns purely
in terms of self-motion inputs, as it implies that an animal’s perception of its own
motion is perturbed by proximity to environmental boundaries. This issue might
be solved by appealing to environmental sensory inputs to grid cells, which are
likely to come from boundary cells (Evans et al. 2016; Hardcastle et al. 2015), but
the question of why such inputs would actively distort the grid firing pattern, rather
than simply reducing accumulated error, remain. It is possible that the observed grid
field distortion offers a functional advantage, but if so, this has yet to be identified.
Second, the stable differences in firing rate between different grid fields of a single
cell are not accounted for by any of the models described above, although these
differences may be important to encode contextual information and contribute to
place cell remapping (Rolls et al. 2006; Andrzejak and Bicanski 2007; but see Fyhn
et al. 2007). Finally, and most importantly, both OI and CAN models assume that
self-motion input is readily available to the grid cell network and used to update grid
firing patterns according to self-motion information. However, the overwhelming
majority of single-cell responses in and around mEC encode head direction, not
movement direction, even when those two signals differ significantly (Raudies et al.
2015). The importance of movement direction information is reinforced by the
demonstration that phase precession follows body movement – rather than head
direction – when rats travel backwards through place fields on a linear track (Cei
et al. 2014). The origin of the movement direction signal that is clearly required to
update grid cell firing patterns in this case, and during normal locomotion, has yet
to be identified.
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Resources

A list of freely available code for various grid cell simulations is given below.

Burak and Fiete (2009) CAN simulations: http://clm.utexas.edu/fietelab/code.htm
Compilation of various grid cell model implementations by Eric Zilli (Zilli 2012):

https://senselab.med.yale.edu/modeldb/showModel.cshtml?model=144006
Pastoll et al. (2013) CAN simulations: https://senselab.med.yale.edu/ModelDB/

ShowModel.cshtml?model=150031

http://clm.utexas.edu/fietelab/code.htm
https://senselab.med.yale.edu/modeldb/showModel.cshtml?model=144006
https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=150031
https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=150031
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Schmidt-Hieber and Häusser (2013) compartmental model: https://senselab.med.
yale.edu/modeldb/showModel.cshtml?model=150239

Solanka et al. (2015) CAN simulations: https://github.com/MattNolanLab/ei-
attractor

Matlab code for hybrid model simulations presented in this chapter: https://senselab.
med.yale.edu/ModelDB/ShowModel.cshtml?model=218085
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