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1.  INTRODUCTION

One of the challenges for neuroimaging is the development 
of more naturalistic and ecologically valid approaches for 
studying brain function (Finn et  al., 2022; Sonkusare 
et  al., 2019). Much effort has been made in creating 

complex visual stimuli to assess brain function in a way 
which is closer to the real world than the laboratory (Betti 
et al., 2013; Kim et al., 2018; Kringelbach et al., 2023). 
However, a fundamental limitation remains in that the 
actual expression of behaviour through movement is 
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on hidden Markov model states derived from the video telemetry. Next, we show that it is possible to identify discrete 
modes of neuronal activity related to specific limbs and body posture by processing the participants’ choreographed 
movement in a dancing paradigm. This demonstrates the potential of combining video telemetry with mobile magne-
toencephalography and other legacy imaging methods for future studies of complex and naturalistic behaviours.
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limited in most neuroimaging modalities. For example, it 
was recently demonstrated that patients with temporal 
lobe resections struggle to navigate a virtual environment 
when exploring it from a desktop computer, but navigate 
as well as healthy controls when exploring in an immer-
sive virtual reality environment (Iggena et al., 2023). The 
restrictive nature of most neuroimaging studies means 
we can isolate certain functions of the brain, but lose 
understanding of how they integrate as a part of a wider 
network, ultimately limiting the ecological validity of stud-
ies of brain function. To this end, mobile neuroimaging 
modalities, such as functional Near Infra-Red Spectros-
copy (fNIRS) and electroencephalography (EEG), have 
been adopted for immersive, ambulatory, naturalistic 
studies (Aghajan et  al., 2017; Alexander et  al., 2024; 
Burgess et al., 2022; Gehrke and Gramann, 2021; Oliver 
et al., 2018; Richer et al., 2024; Töllner et al., 2017).

Magnetoencephalography (MEG; Cohen, 1972; 
Hämäläinen et  al., 1993) is a powerful non-invasive 
method of imaging neural function from the brain, which 
measures the changes in extracranial magnetic field 
originating from intra-cellular current flow. As MEG is a 
direct measure of underlying neural processes, it offers a 
millisecond-scale temporal resolution to capture the 
rapid dynamics of cognition. Unlike EEG which mea-
sures the same signal via electric potentials on the scalp, 
magnetic fields pass through the skull with relatively little 
distortion, allowing MEG to offer a higher spatial resolu-
tion when the data are source-reconstructed. However, 
magnetic fields from neural populations in the brain are 
of the order of tens of femtoTesla, so traditional MEG 
systems have required an array of highly sensitive super-
conducting sensors and cumbersome cryogenic infra-
structure to support them. This means that participants 
have to keep their head (and by extension, the rest of 
their body) as still as possible within a gantry which con-
tains the sensing array. While some attempts at natural-
istic MEG studies have been made (e.g., listening to 
speech or watching movies; Betti et  al., 2013; Nunes 
et al., 2020; Park et al., 2016; Thiede et al., 2020), the 
constraint on movement makes these studies passive, 
with participants not behaving in a natural way during 
the presentation of the stimulus.

Recent advances in the engineering of cryogen-free 
sensors, particularly optically pumped magnetometers 
(OPMs; Knappe et al., 2016; Osborne et al., 2018; Shah 
and Wakai, 2013; Sheng et  al., 2017), have led to the 
rapid development of a new generation of optically 
pumped (OP) MEG systems (Borna et  al., 2017; Boto 
et al., 2017; Iivanainen et al., 2019; Pratt et al., 2021). OP-
MEG has been used to assess sensory (Hill et al., 2019; 
Rier et  al., 2024; Roberts et  al., 2019; Seymour et  al., 
2021) and cognitive processes (Barry et  al., 2019; de 

Lange et  al., 2021; Rhodes et  al., 2023; Tierney et  al., 
2018), as well as showing its potential for clinical applica-
tions (Feys et  al., 2022, 2023; Hillebrand et  al., 2023; 
Vivekananda et al., 2020). The diminutive size of commer-
cial OPMs (approximately the size of a 2-by-3 LEGO brick) 
means that many of these sensors can be packed into a 
rigid helmet (Boto et  al., 2017) or soft cap (Feys et  al., 
2022; Hill et al., 2020), close to the scalp and worn in a 
form factor similar to EEG. A further advantage is the fact 
that muscle activity from the neck or other body parts 
does not contaminate the MEG signal to the same pro-
portion as in EEG (Boto et al., 2019; Muthukumaraswamy, 
2013), which can prove highly beneficial if a study requires 
explicit movement. Indeed, OP-MEG has already demon-
strated compatibility with immersive virtual reality environ-
ments (Roberts et al., 2019) and has been used to reliably 
image neural processes while participants move large 
(>1 m) distances (Holmes et al., 2023b; Mellor et al., 2023; 
Seymour et al., 2021), play a ball-game against each other 
(Holmes et  al., 2023a), or simply drink tea (Boto et  al., 
2018). It is for these reasons that OP-MEG promises to be 
a powerful tool in the field of naturalistic imaging with 
unconstrained movement (Stangl et al., 2023).

One challenge to this approach, however, is how to 
incorporate complex behaviour into the modelling of neu-
roimaging data as experiments become increasingly real-
istic (Stangl et al., 2023). Recent developments in computer 
vision and machine-learning methods to track behaviour 
offer a promising approach (Anderson and Perona, 2014; 
Bigand et  al., 2024; Kaneko et  al., 2024; Mathis et  al., 
2018; Schneider et al., 2023; Weinreb et al., 2023). Here, 
we demonstrate how behavioural information that is 
extracted from a data-mined video of participants per-
forming motor paradigms can be fused with concurrently 
recorded wearable MEG data to yield brain measures 
epoched and extracted from behaviour. We first show that 
we can decode the experimental state of a participant 
from the video data alone. Next, we show that by using the 
video, we can return context to MEG data from partici-
pants dancing and use the video-derived cues to quantify 
neuronal activity associated with the movement of specific 
limbs. In sum, we describe a largely automated method of 
processing video data to identify time windows of interest 
in concurrently recorded neuroimaging data, thereby pro-
viding an analysis pipeline to support future naturalistic 
experiments across a range of cognitive domains.

2.  METHODS

2.1.  Experiment

This study was carried out at the OP-MEG scanning 
suite at the Department of Imaging Neuroscience, UCL. 
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The project was approved by the University College Lon-
don research ethics committee. All participants who took 
part in the study provided informed written consent prior 
to MEG/MRI data collection.

2.1.1.  Motor block design

Three participants (all male, aged 43 ±  12 [mean ± SD 
years]) took part in a motor paradigm. Seated in the mid-
dle of the magnetically shielded room (MSR), the partici-
pant was visually cued to move one of their four limbs 
freely until a fixation cross appeared on the screen. The 
movement epochs were 4 s in length with a 10–11 s inter-
trial interval. In a block, 15 trials of each condition were 
presented in a pseudorandom order, with two blocks 
recorded per participant.

2.1.2.  Dancing

Five participants (all male, aged 37 ± 12 [mean ± SD years]) 
danced the Hokey Cokey, a popular dance for school chil-
dren in the United Kingdom. It was selected as its major 
actions involve moving individual limbs separately, with 
periods where the lyrics explicitly instruct the dancer how 
to move (“you put your left arm in…”) as well as periods of 
ambiguity (“whoa, the Hokey Cokey!”). Participants were 
given basic choreography training prior to recording. An 
audio recording of the song (Black Lace, 1985) was played 
into the room from a set of speakers placed outside of the 
room. Each dance lasted 158 s, and participants repeated 
the dance multiple times. In total, 20 recorded dances 
across all participants were kept for further analysis.

2.2.  Acquisition

2.2.1.  Magnetic resonance imaging

Each participant underwent Magnetic Resonance Imag-
ing (MRI) in preparation for the study on a Tim Trio 3T MR 
System (Siemens Healthineers, Erlangen, Germany). Two 
images were acquired for each participant. The first was 
a modified FLASH sequence with a high-bandwidth read-
out (FOV: 256 mm (A-P) x 256 mm (S-I) x 192 mm (L-R); 
resolution 1 mm x 1 mm x 1 mm) to minimise distortion of 
the participants’ face and scalp, while maintaining 
enough dynamic range to segment white and grey matter 
in the brain. Full details of the acquisition parameters can 
be found in Meyer et  al. (2017). The second, a T1-
weighted image (MPRAGE; TR = 2530 ms, TE = 3.34 ms; 
FOV: 256 mm (A-P) x 256 mm (S-I) x 172 mm (L-R); reso-
lution 1 mm x 1 mm x 1 mm) was collected to supplement 
the first scan, in case automatic segmentation methods 
with the FLASH MR image failed.

2.2.2.  MEG

The OPM arrays consisted of a combination of dual axis 
(2nd generation) and triaxial (3rd generation) zero-field 
magnetometers (QuSpin, Louisville, CO): the dual axis 
sensors provided axially-oriented field detection and one 
tangential field measure; the triaxials gave a full vector 
field measurement. The sensors operated in an open-
loop mode with an operational dynamic range of 
~ ± 4.5 nT relative to their zero-field point. The number of 
channels recorded ranged from 64 to 128; detailed 
breakdowns of channel counts and sensor layouts are 
available in the Supplementary Material. The MEG data 
were digitised using a 16-bit ADC system (National 
Instruments, Austin, TX) at a sample rate of 6000 Hz.

The sensors were placed in bespoke 3D-printed 
scanner-casts (Chalk Design, London, UK) specifically 
designed for each participant (Boto et al., 2017; Tierney 
et al., 2018). Scanner-casts ensure a comfortable fit and 
minimise the co-registration errors between the sensors 
and the participant’s anatomy (Meyer et al., 2017). The 
helmet’s geometry was based on a scalp mesh extracted 
from the FLASH MR images. The OPMs were oriented 
such that the manufacturer-defined Y-axis measured the 
component of the magnetic field axial/radial to the scalp, 
with the centre of the vapour cell typically between 9 and 
12 mm from the scalp surface. Sensor locations were in 
the same coordinate system as the anatomical images 
due to the manufacturing process of the scanner-casts, 
so no additional registration was required.

MEG data were acquired in an MSR (Magnetic 
Shields Ltd, Staplehurst, UK), with internal dimensions of 
4380 mm x 3380 mm x 2180 mm. The MSR is constructed 
from two inner layers of 1 mm mu-metal, a 6 mm copper 
layer, and then two external layers of 1.5 mm mu-metal. 
The room contains a series of built-in degaussing coils to 
minimise the residual background field in the room 
(Altarev et  al., 2015). The degausser was used in the 
period after closing the participant in the room and prior 
to data acquisition. No external active magnetic shielding 
was used for these experiments.

2.2.3.  Video

Visible-light spectrum video recordings of the participants 
performing the experiments were recorded alongside the 
MEG data using a camera attached to a single-board 
computer (Raspberry Pi Foundation, Cambridge, UK). 
The camera was triggered to record via a GPIO pin con-
trolled by the stimulus presentation software, sent to 
both the camera and the OPM acquisition electronics to 
allow for offline synchronisation. Video was recorded at a 
resolution of 640 x 480 pixels with a frame rate of 30 Hz 
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(with the exception of subjects 004 and 005, which were 
recorded at 50 Hz). The camera was located in front of 
participants 001, 002, and 005 (see Fig. 1 for an exam-
ple), and approximately 45 degrees off axis to the right of 
participants 003 and 004.

2.3.  Preprocessing

2.3.1.  Video

Telemetry information from the video was extracted using 
OpenPose (Cao et al., 2021), a pre-trained convolutional 
neural network which is capable of single- and multi-
person pose estimation from images and video. Inference 
was performed using an RTX A5000 GPU (NVIDIA, Santa 
Clara, CA), and for every frame, the X-Y pixel locations 
and a confidence-of-fit score for 25 different key-points 
of the body were recorded. An example of the key-points 
fitted to each frame can be found in Figure 1. For each 
experiment, the telemetry position data were linearly 
interpolated to fix missing data, converted to speed 
(units: pixels / frame), and normalised via a Z-transform. 
Finally, the 50 Hz telemetry from participants 004 and 005 
was linearly interpolated to match the 30 Hz video sam-
pling rate of subjects 001–003. For the dancing telemetry, 
each session’s data were normalised individually and 
then concatenated in time. The data were then parti-
tioned using a hidden Markov model (HMM), with a 
multivariate Gaussian mixture model used as the obser-
vation model. To derive when differing movement ‘states’ 

occurred in the data, HMM inference was handled with 
the HMM-MAR toolbox (Vidaurre et al., 2016) to separate 
the data into k states. On completion, the fitted HMM 
returned a probabilistic timeseries for each of the k states 
and Viterbi path which assigns a mutually-exclusive state 
on a per-frame basis.

In the block design experiment, we set k = 15. To 
identify what each state corresponded to, the binarised 
Viterbi path for a given state was compared to the initial 
block design timings using the Jaccard index. The Jac-
card index is a measure of the intersection of two sets 
relative to their union (Jaccard, 1912). The state with the 
highest Jaccard index for a given experimental condition 
was labelled with that condition name. The 11 remaining 
(unlabelled) states were considered as rest and com-
bined into a single rest meta-state.

For the dancing experiment, where the video con-
sisted of a concatenated group of subjects (from different 
angles in the room) we fitted a larger, k = 25 state HMM. 
The higher number of requested states would allow for 
multiple states corresponding to the same limb (but from 
different subjects) to be identified. After HMM fitting, the 
Viterbi paths were regressed against the telemetry of 
each key-point, to generate regression maps of move-
ment (examples can be seen in Figs. 2B and 4A). From 
these maps, which limb (or dance move) a state corre-
sponded to was performed by visual inspection, with 
appropriate labelling of the states applied. If two or more 
states represented the same limb (but across different 

Fig. 1.  A subject performing the dancing paradigm within the magnetically shield room while wearing the OP-MEG 
system. The pose estimation results for this video frame have been superimposed to represent where the key-points 
(circles) used for telemetry analysis were located.
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subjects), their Viterbi paths were pooled together to 
make one meta-state representing the limb across all 
subjects (details of state-limb mappings can be found in 
the Supplementary Material).

2.3.2.  MEG

An anti-aliasing 500 Hz low-pass filter (60th-order FIR fil-
ter combined with a Kaiser window) was applied to the 
MEG data and then downsampled to a sample rate of 
2000 Hz. The HMM state time courses derived from the 
video were synchronised to the MEG using nearest-
neighbour interpolation and appended to the dataset as 
supplementary trigger channels. Environmental interfer-
ence was reduced by applying a Homogenous Field Cor-
rection (HFC), where the interference is modelled as a set 
of regular spherical harmonics derived from the sensor 
array (Tierney et  al., 2022). Here, 8 components were 
projected out of the data (3 homogenous field compo-
nents and 5 linear gradients). If any channels had a resid-
ual variance larger than 100 pT after HFC, the projection 
was undone, these channels were disabled, and the HFC 
was reapplied again without those channels included in 
the model. The sensor compensation matrix was also 
updated to account for the linear combinations of sen-
sors in the forward modelling (Tierney et al., 2021). A sec-
ondary advantage of using HFC is that its performance is 
robust across arrays of differing channel numbers and 
types. The expected difference in signal is <1 dB across 
the arrays utilised (Tierney et al., 2022). We then band-
pass-filtered into the 8–30  Hz band, which has been 
strongly associated with sensorimotor activity (Gaetz 
et al., 2020; Jurkiewicz et al., 2006; Pfurtscheller & Lopes 
da Silva, 1999), though we note that these are often sep-
arated into sub bands with distinct purposes (Richer 
et al., 2024).

2.4.  Source localisation

Source localisation was performed with the DAiSS tool-
box supplied with SPM12 (Litvak et al., 2011). Sources 
were modelled along a 5  mm grid within a boundary 
delineating the brain and cerebrospinal fluid (CSF) of 
the participant. The forward model used was Nolte’s 
single shell (Nolte, 2003), where the conductive volume 
geometry was the same brain/CSF boundary. Three 
dipoles per location representing the cardinal orienta-
tions were generated, with their degrees of freedom 
reduced to two to compensate for the ‘silent radial 
source’. A linearly-constrained-minimum-variance (LCMV) 
beamformer (Brookes et  al., 2008; Van Veen et  al., 
1997) was implemented to perform the inverse model-
ling. Due to the projection carried out during HFC in 

preprocessing, MEG data were rank deficient. To con-
trol for this, the covariance matrix was regularised; the 
matrix was decomposed into a set of eigenvectors and 
eigenvalues, and the 8 smallest eigenvectors/eigenval-
ues (associated with the 8 projected-out components 
from HFC) were discarded (Westner et al., 2022). During 
LCMV, the forward models for each source were linearly 
combined to maximise variance from that location 
(Sekihara et al., 2004).

2.5.  First-level source analysis

To map which sources in the brain covaried with the onset 
and offset of the behavioural states, we opted to take a 
2-level general linear model (GLM) approach (Brookes 
et al., 2004; Quinn et al., 2024; Worsley & Friston, 1995). 
In particular, we took an approach based on the GLM-
beamfomer (Brookes et al., 2004). For the first level, we 
performed a mass-univariate multiple regression on each 
source. For each source we generated an amplitude 
envelope timecourse via a Hilbert transform. Prior to 
regression, these envelopes were log-transformed 
(Hawkins & Wixley, 1986). A given processed source sig-
nal y ∈Rnsamples×1 is fitted to our general linear model:

	 y = Xβ + e,	

where, X ∈ Rnsamples×nregressors, is our design matrix with our 
temporal features of interest in the columns, β ∈ Rnregressors×1 
are the regression coefficients, and e∈Rnsamples×1 are our 
unexplained data. How we constructed X for each exper-
iment differed as follows. For the motor experiment, we 
generated two design matrices which differed in how the 
first column was defined. Column one was either the 
active period as specified by the block design (a box car 
between 0 and 4  s of trial onset), or the HMM-derived 
active period (binarised state time-series). For both 
design matrices, the second column was a baseline ‘rest’ 
period (box car between 6 and 10 s of trial onset) and the 
third column modelled was the mean. A regression was 
performed for each source in the brain, generating a set 
of regression coefficients per voxel, which were com-
bined to generate images. For each trial, two regression 
coefficient images (active and rest features) were kept for 
further analysis.

For the dancing experiment design, we included all 
motor meta-states as regressors as well as a mean and 
linear trend features, as our motor states were orthogo-
nal in time. A single design matrix per dance was con-
structed to generate one regression coefficient image 
per meta-state, per dance. Example design matrices 
for both experiments can be found in the Supplementary 
Material.
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2.6.  Second-level analysis

2.6.1.  Motor block design

In MEG studies, it is typical to contrast the movement 
period to a baseline (rest) epoch within the same trial 
(e.g., Pakenham et al., 2020). We replicate this approach 
in our second-level GLMs. For each limb, the 1st-level 
regression coefficient images (either block design or 
HMM timed) were put into a paired t-test design matrix 
with their trial-specific rest regression coefficient images 
and a t-contrast between the active and rest images were 
generated, forming a paired t-image for each limb.

2.6.2.  Dancing

With no obvious hypothesis as to where a ‘rest’ period 
would occur in the data, we opted to contrast different 
movement states to each other (Ma et al., 2022). Regres-
sion coefficient images from each dance were first put 
into a 1 x 5 factorial design matrix, and t-contrasts between 
various limbs were generated. We opted to treat each 
dance individually. For all t-images, a whole-brain 
Family-Wise Error (FWE) correction using the volumetric 
random field theory (Worsley et al., 1996) was applied 
using SPM.

3.  RESULTS

3.1.  Motor block design

We set out to assess whether in a controlled, block-
designed motor paradigm we could detect participant 
movement in video telemetry and use that to localise 
movement-related activity in the brain. Figure 2 depicts 
the results from a typical participant decoding the telem-
etry of the block-design experiment, where 1 of the 4 
limbs were moved during a visual cue period. Similar 
results from the other participants can be found in the 
Supplementary Material. Figure 2A shows the binary time-
course for each condition of the experiment and the clos-
est matching HMM state timecourse. Here, the metric for 
matching a state to the original timecourse was the Jac-
card index (mean  ±  SD) for the selected 4 states of 
0.65 ± 0.06 (p < 0.001, see Supplementary Material). The 
resultant HMM states qualitatively resemble the original 
experimental timeseries they were compared against. The 
regression heatmaps in Figure 2B show which key-points 
on the body were implicated in each state. We observe 
that the parts of the body the regression highlighted cor-
respond to the pre-defined experimental condition.

One feature that the telemetry identifies is the reaction 
time between a stimulus being presented and the partic-
ipant executing and concluding the movement. Figure 2C 

illustrates this with an example trial (where the participant 
was asked to moved their left arm) in which the black 
dashed line represents the stimulus timing, and the blue 
solid line corresponds to the posterior probability of the 
state being active. Here, we observe that the participant 
took (approximately) an extra second to cease movement 
after they were cued to stop. We found that across all 
trials, the total time movement was executed for was 
4.2 ± 0.9 s (mean ± SD). Figure 2C also contains an addi-
tional period where the state being active is highly active 
at around t = 10 s, which was within the inter-trial interval. 
To illustrate why the state is active, we have overlaid the 
associated telemetry timeseries from that state (made of 
the weighted sum of the key-points highlighted in Fig. 2B). 
We see the HMM is also sensitive to spurious smaller 
movements after the (instructed) large movements during 
the trial. These two examples within Figure 2C highlight 
how the telemetry data can reveal when the participant 
deviates from the experimental design.

We quantitatively compare the decoding of the exper-
iment to the prescribed experimental timings in Figure   
2D–E. These should be interpreted in the context of the 
variable reaction times of the participants. Figure 2D is 
the confusion/classification matrix comparing the ground 
truth of the experimental condition to the HMM-derived 
Viterbi path. The Viterbi path is binarised for each labelled 
experimental state. Note for the ‘rest’ state, this rep-
resents the remaining 11 unlabelled states from the HMM. 
For each condition, the predicted state was the most 
dominant, and we get an overall F1 score (non-weighted 
average of the Dice coefficients; Manning et al., 2008) of 
0.814 (p < 0.001, see Supplementary Material). For the 
movement conditions, we see that a proportion of the 
movement states are predicted to be the rest condition, 
which would correspond to the reaction time for the par-
ticipant to initiate the movement after the cue. Figure 2E 
shows the Receiver Operatic Characteristic (ROC) curves 
for the HMMs probabilistic state timeseries. Again, the 
timeseries for the unlabelled states are pooled together 
to represent the ‘rest’ condition. Here, we are assuming a 
one-versus-all classification (i.e., correctly classifying a 
given state vs. not). The areas under the curve (AUC) for 
each of the states are high (left leg, 0.868; right leg, 0.862; 
left arm, 0.975; right arm, 0.990; rest, 0.8684), resulting in 
a macro-average (non-weighted average) AUC of 0.912 
(p  <  0.001, see Supplementary Material). We also per-
formed a split-half cross-validation, which showed simi-
lar levels of performance (see Supplementary Material).

Figure 3 shows the T-contrasts where 8–30 Hz oscilla-
tory power in rest periods were significantly higher 
(p < 0.05, FWE corrected) than the original experimental-
derived active epochs (Fig.  3A) or the HMM-derived 
epochs for each of the 4 experimental conditions 
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(Fig.  3B). For clarity, we have applied a threshold of 
70% of the most extreme T-statistic in the image. In all 
conditions, we observe the characteristic event-related 
decrease in power during movement. Focusing on the 
block-design derived results (Fig.  3A), we first observe 
that all of the peak locations are in the precentral gyrus 
(motor cortex). Second, we see that all 4 of the images 
follow the traditional organisation of the motor cortex 
(Gordon et al., 2023), with the arm condition peaks local-

ised more laterally, and the leg peaks appearing medially. 
The peak T-value locations can be found in the Supple-
mentary Material. Considering the results of the HMM-
derived timings, we note two things. First, the peak 
locations are very close between the two approaches 
(distances between peaks no further than 9.2 mm apart, 
see Supplementary Material). Second, the threshold sta-
tistical maps are similar in their morphology and their 
T-statistics are of a similar magnitude to the block design 

Fig. 2.  A comparison of the HMM-derived video telemetry states in comparison to the original experiment design for 
a simple 4 condition motor task in a single subject (participant 005). (A) Temporal plots depicting the 4 experimentally 
derived states across a recording represented as binary signals. Plotted below each experimental timecourse is the 
corresponding telemetry state that most closely matched each experimental condition. The duration of each movement 
was 4.2 ± 0.9 s (mean ± SD). (B) Heatmaps corresponding to the regression of the HMM state timecourse against the 
original telemetry data to identify which body parts were moving in a given state; the darker the plot, the stronger the 
relationship between telemetry data and a given HMM state. (C) A portion of the left arm experimental state (black dashed 
line) and the closest matched HMM state (blue solid line) which demonstrates the delay (~1000 ms offset) between 
presentation of experimental cue and cessation of movement. We also see a period of small movements (pink line) 
occurring at around 8 s (during the inter-trial interval) which was classified as movement by the HMM, (D) Multi-class 
confusion matrices showing the probability of a given HMM state being active compared to the experimental ground truth. 
(E) Receiver operating characteristic (ROC) curves for the resultant HMM compared to the block design it is predicting. 
Pale colours represent the states representing specific conditions in a (one vs. all) classification. The black line represents 
the macro-average (unweighted mean) of all 5 ROC curves.
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images. To summarise, the telemetry-based analysis gives 
comparable results to the block design.

3.2.  Dancing

Having established that our video telemetry pipeline 
works with a traditional, constrained motor paradigm, we 
extended our investigation to a series of more naturalistic 
movements during a choreographed dance routine. Of the 
25 states extracted from the telemetry, 13 were catego-
rised into 5 meta-states, based on which key-points on the 
body were employed. These meta-states were used to 
epoch the MEG data for further analyses. The heatmaps of 
these meta-states are depicted in Figure 4A. These repre-
sent each of the 4 individual limbs and an additional state 
representing both arms being moved in unison. Individual 
maps and timeseries of the 25 states can be found in the 
Supplementary Material. Figure  4B shows the fractional 
occupancy of a meta-state across the 15 sessions, which 
reveals a clear temporal structure emerging from the dance 
across all subjects and sessions. We see that each of the 
individual limb states dominates for a verse and chorus 
and, crucially, the dominant state corresponds to the 
theme of the verse (“You put your left arm in” for verse 1, 
right arm for verse 2, etc.). We can also observe when a 

participant switches from one limb to another within a 
verse. For example, after 16 s when people transition from 
moving one arm to both at the line “you do the hokey-
cokey” the dominant state switches from the left arm state 
(blue line) to the both arms state (purple line).

Activation maps in the 8–30 Hz band, as defined by 
contrasting different movement states, are depicted in 
Figure 5. In particular, we focus on three main contrasts 
of interest. For Figure  5A and B, we generated paired 
T-contrasts, where the state for both arms moving (pur-
ple state in Fig. 4B) was subtracted from one of the sin-
gle arm states. First, we contrasted when the left arm 
state had more power than the both arms state (Fig. 5A) 
and the resultant paired T-image shows significant 
activation (p < 0.05, FWE corrected) over the left dorsal 
sensorimotor areas (associated with right-upper limb 
movement). To get an activation of the right arm may be 
counterintuitive, but we note that contrasting both arms 
to a single arm should result in the activation map of the 
un-contrasted limb from a set theory perspective (the 
contrast represents the disjunctive union of the two 
limbs). Further supporting this idea is the opposite con-
trast of both arms to right arm (Fig. 5B), where we see a 
significant effect in the opposite hemisphere, represent-
ing left-arm movement. We note that we also contrasted 

Fig. 3.  Source localisation results of a block-designed, 4-condition motor experiment in a single subject, with results 
presented on a glass brain. (A) T-contrasts for the 4 active conditions versus rest based on the timings specified by the 
block design. (B) T-contrasts for the 4 active conditions versus rest based on the HMM-derived timings. Images have been 
thresholded to show anything within 70% of the most extreme statistic.
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single arm movements against each other, and these 
can be found in the Supplementary Material. Finally, we 
localised activity related to the movement of the legs in 
Figure 5C. We summed the left leg and right leg images 
to make a pooled mean effect of leg activation, finding 

significant activation in medial areas of the brain corre-
sponding to lower limb movement. In summary, we have 
been able to extract movement timings from a complex 
motor paradigm and recover a plausible representation 
of motor activity in the brain.

Fig. 4.  Five telemetry states extracted from the video of the 5 participants dancing to the Hokey Cokey. (A) The 
heatmaps related to regressing the binarised state timecourses against the key-point velocity data. Deep red areas show 
the parts of the body represented the most by each state. (B) Session-averaged timecourses for each state, generating a 
fractional occupancy timeseries, revealing the onset and offset of dominant states over the progression of the dance.

Fig. 5.  Group activation effects of 8–30 Hz power contrasts between different motor states from participants dancing, 
shown on glass brains. (A) Right arm effect, derived by contrasting the left arm to both arms. (B) Left arm effect, derived 
by contrasting right arm to both arms. (C) Combining the left and right leg state contrasts to get the mean effect of both 
legs reveals reductions in oscillatory power during movement over medial motor areas. For all images, the threshold was 
set to a T-value where p < 0.05 (FWE corrected).
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5.  DISCUSSION

Wearable MEG systems (such as those using OPMs) are 
promising technologies for the future of naturalistic, 
mobile neuroimaging (Stangl et al., 2023). Work on mak-
ing wearable MEG systems compatible with immersive 
virtual environments (Roberts et al., 2019) and ambula-
tory movement (Holmes et al., 2023b; Mellor et al., 2023; 
Seymour et al., 2021) is already well underway. Here, we 
demonstrate that MEG is on its way to being an option for 
naturalistic studies alongside scalp- and intercranial-
EEG (Alexander et al., 2024; Gehrke & Gramann, 2021; 
Aghajan et  al., 2017; Töllner et  al., 2017) and fNIRS 
(Burgess et al., 2022; Oliver et al., 2018). In addition to 
recording from a mobile imaging modality, the collection, 
analysis, and fusion of behavioural data during the exper-
iment can return context to more complex neuroimaging 
data. Here, we combine OP-MEG and video telemetry to 
show one such path for naturalistic analysis.

We have shown that it is possible to extract experi-
mental timings to process OP-MEG data, entirely from 
marker-less decomposition of behavioural data, derived 
with open-source machine-learning approaches applied 
to videos of participants executing limb movements. We 
first tested its capabilities in a well-controlled, block-design 
experiment and found it could recover, and improve on, 
the experimental timings needed to identify task-based 
changes in neural activity. We then applied this approach 
to a dancing paradigm, where, after some basic choreog-
raphy instruction to the participants, all movement was 
based on the interpretation and timing of each individual. 
From these video recordings, we derived states associated 
with movements of different limbs, which were mapped 
onto plausible representations of the limbs along the sen-
sorimotor cortex. Our approach is particularly applicable 
for naturalistic studies, where consistent timings across 
participants are not guaranteed. By decoding these 
motor states from the behavioural data, we recover the 
subject-specific timings and factor in what could be pre-
viously described as ‘noise’ in our experimental design. 
This had been identified as one of the key challenges to 
developing successful mobile, naturalistic neuroimaging 
studies (Stangl et al., 2023).

Using regular (visual spectrum) video data to analyse 
movement with neural-network-based pose estimators 
(Bazarevsky et al., 2020; Cao et al., 2021; Mathis et al., 
2018) demonstrates that one can forgo the need for addi-
tional retro-reflective markers on the body. The use of pose 
estimators as a valid method to supplement or replace 
more extensive motion capture systems is currently an 
active area of investigation (Bae et  al., 2024; Friedrich 
et  al., 2024; Kosourikhina et  al., 2022; Needham et  al., 
2021), with initial findings confirming similar performance 

between systems. Using pose estimators on visible light 
data has an additional benefit for the family of OPMs we 
use, such that it removes a source of infra-red light from 
traditional motion capture, that can interfere with the oper-
ation of our OPMs. The use of HMMs to partition motion 
telemetry data is not uncommon (Agrahri et  al., 2022; 
Buderman et al., 2021; Conners et al., 2021) as they are 
able to exploit the temporally-rich nature of the multivari-
ate motion data. We note that HMMs are also very popular 
in neuroimaging analysis—indeed, we made use of an 
HMM toolbox primarily designed to accommodate neuro-
imaging data here (Vidaurre et al., 2016).

Our results clustered into locations of the upper limb 
movements (dorsal motor cortex) and lower limb areas 
(medial motor cortex) that conform with the functional 
neuroanatomy of the sensorimotor cortices (Gordon 
et al., 2023; Jensen et al., 2022). This separation was 
clear in the block-design motor experiment, where par-
ticipants were seated and it was easier for them to 
move a limb in isolation. For the dancing paradigm, 
participants were moving their whole bodies during 
each dance move, and never just moved one limb in 
isolation. This explains, for example, why there was 
activation within lower limb areas only when contrast-
ing the leg states together rather than subtracting from 
each other, as muscles in both legs are activated when 
executing a swing movement with one leg. This investi-
gation provides a proof-of-principle of the potential of 
wearable MEG to facilitate functional neuroimaging 
without highly controlled behavioural tasks.

We note that our results were based on the modulation 
of induced oscillatory power, where precise time- and 
phase-locking to actions or stimuli are not essential to 
reveal the movement-related dynamics in the telemetry. 
Optical motion capture methods, whether marker-less 
pose estimators or tracking of retro-reflective markers, 
are essentially limited to the performance of the cameras 
used. These cameras run at approximately 200 frames 
per second for most practical applications. This temporal 
precision (~5 ms) is likely sub-optimal for most average 
evoked response measures. Conventional methods to 
detect movement from a small area of the body (e.g., 
from an electromyogram or an inertial measurement unit) 
offer a temporal precision currently unmatched and are 
suitable for evoked response measures. However, this 
temporal precision comes at the cost of a lack of spatial 
coverage. That is, there is an experimental trade-off 
between temporal precision and coverage.

Tracking whole-body subject motion also has clinical 
value. Pose-based behavioural data has been shown to 
be beneficial in assessing Parkinson’s disease (Kaneko 
et  al., 2024; Sabo et  al., 2022; Roth et  al., 2021), the 
progress of Friedreich’s ataxia (Kadirvelu et  al., 2023), 
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detecting non-verbal behaviour in Autistic Spectrum 
Disorder (Kojovic et  al., 2021), and predicting cerebral 
dysfunction in infants (Gleason et al., 2024). Furthermore, 
combining pose-estimation with a flexible neuroimaging 
system such as OP-MEG (or EEG) promises to improve 
our understanding of these conditions in ways that were 
previously unavailable. There are direct clinical pathways 
where this could offer immediate benefit, such as in pae-
diatric cases. For example, cases of refectory (drug resis-
tant) epilepsy where surgical intervention may require 
careful localisation of the eloquent cortex with functional 
neuroimaging, to ensure that key faculties are not 
impaired when removing the seizure onset zone. This is 
typically assessed with functional MRI (Al-Arfaj et  al., 
2023; Barras et al., 2016), but success of the mapping is 
limited to the performance of the patient, and their toler-
ance of the MR system. For young children with epilepsy, 
this effect may be compounded (Yerys et al., 2009). Solu-
tions to this could include trying to map the motor areas 
in the resting state (Krishnamurthy et al., 2022), but there 
may be a more naturalistic alternative. Children playing 
when undergoing video-M/EEG telemetry sessions for 
seizure monitoring will enter states of movement and 
periods of rest naturally. If the video footage was pro-
cessed to demarcate these periods, it is entirely feasible 
that these motor maps (and, indeed, language or other 
key regions of eloquent cortex) could be derived for free 
out of long recordings where the primary goal is to locate 
ictal/interictal activity. Using play in neuroimaging may 
also be favourable for other populations, such as investi-
gating the progress of motor development in children 
with Autistic Spectrum Disorder (An et al., 2021; Wilson 
et al., 2018), where a flexible imaging system which can 
adapt to the child, while simultaneously tracking move-
ment should lead to more successful recording sessions 
than a large unadaptable system.

One technical aspect of the OP-MEG acquisition is the 
lack of additional active shielding applied to our OPM 
recordings. Our magnetically shielded room provides 
adequate shielding in the centre of the room to provide a 
low enough field to keep the sensors in their operational 
range (up to 4.5 nT from their initialisation point). How-
ever, we did not account for cross-axis projection errors 
(CAPE; Borna et  al., 2022), which become apparent in 
recordings when the background field deviates by 
approximately 1 nT or more from the sensor’s zero-field 
point. Cross-axis projection errors result in additional 
asymmetrical non-linearities in the field-to-voltage res
ponse of the sensors (Schofield et  al., 2023), which, in 
turn, has an impact on source localisation performance 
(Borna et al., 2022). In our block-designed motor experi-
ment, the largest field experienced by any sensor was 
2.1  nT from its zero-point. For the dancing data, the 

largest fields measured for each of the 5 subjects were 
1.5, 0.6, 1.2, 2.6, and 3.5 nT from their zero-point. While 
the data presented here will contain CAPE effects, their 
effect is small and the interference reduction methods 
applied here are robust to the non-linearities introduced 
by CAPE (Tierney et al., 2022). Methods which counteract 
field changes experienced by the sensors during ambula-
tory motion, whether through dedicated nulling coils built 
into the shielded room (Holmes et al., 2023b) or by using 
a dynamic closed-loop system built directly into the sen-
sors (Lee et al., 2014; Mellor et al., 2023; Nardelli et al., 
2019; Robinson et al., 2022), could be employed for future 
studies to control for CAPE-related non-linearities.

To conclude, our work provides additional support for 
the exciting opportunity of OP-MEG for studying the neu-
ral basis of complex motor functions, but also spatial nav-
igation, memory, and social interactions in realistic and 
ecologically valid situations, in both health and disease.

DATA AND CODE AVAILABILITY

The MATLAB scripts used to analyse the data are avail-
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Openpose 1.7.0 is available to download from https://
g i thub​. com​/ CMU​- Perceptua l ​- Comput ing​- Lab​
/openpose. The data, downsampled to 2 kHz (with anti-
aliasing applied), are available to download from Zenodo 
at https://doi​.org​/10​.5281​/zenodo​.8139849. Openpose 
telemetry data from the video are included. To conform 
with data protection regulations, we cannot share the orig-
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