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Abstract Hippocampal place cells in freely moving rodents display both theta phase precession 
and procession, which is thought to play important roles in cognition, but the neural mechanism 
for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation 
within a continuous attractor neural network causes the neural activity bump to oscillate around the 
external input, resembling theta sweeps of decoded position during locomotion. These forward 
and backward sweeps naturally account for theta phase precession and procession of individual 
neurons, respectively. By tuning the adaptation strength, our model explains the difference between 
‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which 
phase precession predominates. Our model also explains the constant cycling of theta sweeps along 
different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and 
the continued phase shift after transient silencing of the hippocampus. We hope that this study will 
aid an understanding of the neural mechanism supporting theta phase coding in the brain.

eLife assessment
This study provides valuable new insights on how a prevailing model of hippocampal sequence 
formation can account for recent data, including forward and backward sweeps, as well as constant 
cycling of sweeps across different arms of a T-maze. The convincing evidence presented in support 
of this work relies on classical analytical and computational techniques about continuous attractor 
networks.

Introduction
One of the strongest candidates for temporal coding of a cognitive variable by neural firing is the 
‘theta phase precession’ shown by hippocampal place cells. As an animal runs through the firing field 
of a place cell, the cell fires at progressively earlier phases in successive cycles of the ongoing local 
field potential (LFP) theta oscillation, so that firing phase correlates with distance traveled (O’Keefe 
and Recce, 1993; Skaggs et al., 1996; see also Schmidt et al., 2009; Figure 1a and b). At the 
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population level, phase precession of individual cells gives rise to forward theta sequences once 
starting phases are aligned across the population (Feng et al., 2015), where neurons representing 
successive locations along the trajectory of the animal display predictable firing sequences within indi-
vidual theta cycles (Johnson and Redish, 2007). These prospective sequential experiences (looking 
into the future) are potentially useful for a range of cognitive faculties, e.g., planning, imagination, and 
decision-making (O’Keefe and Recce, 1993; Skaggs et al., 1996; Hassabis et al., 2007; Wikenhe-
iser and Redish, 2015; Kay et al., 2020).

Besides prospective representation, flexible behaviors also require retrospective representation of 
sequential experiences (looking into the past). For instance, in goal-directed behaviors, it is important 
to relate the reward information that might only occur at the end of a sequence of events to preceding 
events in the sequence (Foster et al., 2000; Foster and Wilson, 2006; Diba and Buzsáki, 2007). 
A recent experimental study (Wang et al., 2020) described retrospective sequences during online 
behaviors (also indicated by Skaggs et al., 1996; Yamaguchi et al., 2002), namely, reverse theta 
sequences, interleaved with forward theta sequences in individual theta cycles (Figure 1c). Such retro-
spective sequences, together with the prospective sequences, may cooperate to establish higher-
order associations in episodic memory (Diba and Buzsáki, 2007; Jaramillo and Kempter, 2017; 
Pfeiffer, 2020).

While a large number of computational models of phase precession and the associated forward 
theta sequences have been proposed, e.g., the single-cell oscillatory models (O’Keefe and Recce, 
1993; Kamondi et al., 1998; Harris et al., 2002; Lengyel et al., 2003; Losonczy et al., 2010) and 
recurrent activity spreading models (Tsodyks et al., 1996; Romani and Tsodyks, 2015), the underlying 
neural mechanism for interleaved forward- and reverse-ordered sequences remains largely unclear. 
Do reverse theta sequences share the same underlying neural mechanism as forward sequences, or do 
they reflect different mechanisms? If they do, what kind of neural architecture can support the emer-
gence of both kinds of theta phase shift? Furthermore, since forward theta sequences are commonly 
seen, but reverse theta sequences are only seen in some circumstances (Wang et al., 2020), are they 
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Figure 1. Theta sequence and theta phase shift of place cell firing. (a) An illustration of an animal running on a linear track. A group of place cells each 
represented by a different color are aligned according to their firing fields on the linear track. (b) An illustration of the forward theta sequences of the 
neuron population (upper panel), and the theta phase precession of the fourth place cell (represented by the green color, lower panel). (c) An illustration 
of both forward and reverse theta sequences (upper panel), and the corresponding theta phase precession and procession of the fourth place cell (lower 
panel). The sinusoidal trace illustrates the theta rhythm of local field potential (LFP), with individual theta cycles separated by vertical dashed lines.

https://doi.org/10.7554/eLife.87055
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commensurate with forward theta sequences? If not, to what degree are forward theta sequences 
more significant than the reverse ones?

To address these questions, we built a continuous attractor neural network (CANN) of the hippo-
campal place cell population (Amari, 1977; Tsodyks and Sejnowski, 1995; Samsonovich and 
McNaughton, 1997; Tsodyks, 1999). The CANN conveys a map of the environment in its recurrent 
connections that affords a single bump of activity on a topographically organized sheet of cells which 
can move smoothly so as to represent the location of the animal as it moves in the environment. Each 
neuron exhibits firing rate adaptation which destabilizes the bump attractor state. When the adap-
tation is strong enough, the network bump can travel spontaneously in the attractor space, which 
we term as the intrinsic mobility. Intriguingly, we show that, under competition between the intrinsic 
mobility and the extrinsic mobility caused by location-dependent sensory inputs, the network displays 
an oscillatory tracking state, in which the network bump sweeps back and forth around the external 
sensory input. This phenomenon naturally explains the theta sweeps found in the hippocampus 
(Skaggs et al., 1996; Burgess et al., 1994; Foster and Wilson, 2007), where the decoded position 
sweeps around the animal’s physical position at theta frequency. More specifically, phase precession 
occurs when the bump propagates forward while phase procession occurs when the network bump 
propagates backward. Moreover, we find that neurons can exhibit either only predominant phase 
precession (unimodal cells) when adaptation is relatively strong, or interleaved phase precession and 
procession (bimodal cells) when adaptation is relatively weak.

In addition to theta phase shift, our model also successfully explains the constant cycling of 
theta sweeps along different upcoming arms in a T-maze environment (Kay et al., 2020), and other 
phenomena related to phase precession of place cells (Geisler et al., 2007; Zugaro et al., 2005). 
We hope that this study facilitates our understanding of the neural mechanism underlying the rich 
dynamics of hippocampal neurons and lays the foundation for unveiling their computational functions.

Results
A network model of hippocampal place cells
To study the phase shift of hippocampal place cells, we focus on a one-dimensional (1D) CANN 
(mimicking the animal moving on a linear track, see Figure 2a), but generalization to the 2D case 
(mimicking the animal moving in a 2D arena) is straightforward (see Discussion for more details). 
Neurons in the 1D CANN can be viewed as place cells rearranged according to the locations of their 
firing fields on the linear track (measured during free exploration). The dynamics of the 1D CANN is 
written as:

	﻿‍
τ

dU(x, t)
dt

= −U(x, t) + ρ

ˆ ∞

−∞
J(x, x′)r(x′, x)dx′ − V(x, t) + Iext(x, t),

‍�
(1)

	﻿‍
r(x, t) = gU(x, t)2

1 + kρ
´∞
−∞ U2(x′, t) dx′

,
‍�

(2)

Here, ‍U
(
x, t

)
‍ represents the presynaptic input to the neuron located at position ‍x‍ on the linear 

track, and ‍r
(
x, t

)
‍ represents the corresponding firing rate constrained by global inhibition (Hao et al., 

2009). ‍τ ‍ is the time constant, ‍ρ‍ the neuron density, ‍k‍ the global inhibition strength, and ‍g‍ is the gain 
factor. The dynamics of ‍U

(
x, t

)
‍ is determined by the leaky term ‍−U

(
x, t

)
‍, the recurrent input from other 

neurons, the firing rate adaptation ‍−V
(
x, t

)
‍, and the external input ‍I

ext (x, t
)
‍. The recurrent connection 

strength ‍J
(
x, x′

)
‍ between two neurons decays with their distance. For simplicity, we set ‍J

(
x, x′

)
‍ to be 

the Gaussian form, i.e., 
‍
J
(
x, x′

)
= J0/

√
2πaexp

[
−
(
x − x′

)2 /
(

2a2
)]

‍
, with ‍J0‍ controlling the connection 

strength and ‍a‍ the range of neuronal interaction. Such connectivity gives rise to a synaptic weight 
matrix with the property of translation invariance. Together with the global inhibition, the translation 
invariant weight matrix ensures that the network can hold a continuous family of stationary states 
(attractors) when no external input and adaptation exist (Tsodyks and Sejnowski, 1995; Samsonovich 
and McNaughton, 1997; McNaughton et al., 2006; Wu et al., 2008), where each attractor is a local-
ized firing bump representing a single spatial location (Figure 2b). These bump states are expressed 
as (see ‘Stability analysis of the bump state’ for the parameter settings and ‘Deriving the network state 
when the external input does not exist (Iext = 0)’ for the detailed mathematical derivation):

https://doi.org/10.7554/eLife.87055
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Figure 2. The network architecture and tracking dynamics. (a) A one-dimensional (1D) continuous attractor neural network (CANN) formed by place 
cells. Neurons are aligned according to the locations of their firing fields on the linear track. The recurrent connection strength ‍J

(
x, x′

)
‍ (blue arrows) 

between two neurons decays with their distance on the linear track. Each neuron receives an adaptation current ‍−V
(
x, t

)
‍ (red dashed arrows). The 

external input ‍I
ext (x, t

)
‍, represented by a Gaussian-shaped bump, conveys location-dependent sensory inputs to the network. (b) An illustration of the 

state space of the CANN. The CANN holds a family of bump attractors which form a continuous valley in the energy space. (c) The smooth tracking 
state. The network bump (hot colors) smoothly tracks the external moving input (the white line). The red (blue) color represents high (low) firing rate. 
(d) The traveling wave state when the CANN has strong firing rate adaptation. The network bump moves spontaneously with a speed much faster 
than the external moving input. (e) The intrinsic speed of the traveling wave versus the adaptation strength. (f) The oscillatory tracking state. The 
bump position sweeps around the external input (black line) with an offset ‍d0‍. (g) The phase diagram of the tracking dynamics with respect to the 
adaptation strength ‍m‍ and the external input strength ‍α‍. The colored area shows the parameter regime for the oscillatory tracking state. Yellow (blue) 
color represents fast (slow) oscillation frequency. (h and i) Simulated (red points) and theoretical (blue line) oscillation frequency as a function of the 
adaptation strength (h) or the external input strength (i).

https://doi.org/10.7554/eLife.87055
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	﻿‍
r̄
(
x, t

)
= Ar

(
t
)

exp

{
−
[
x − z

(
t
)]2

2a2

}
,
‍�

(3)

where ‍Ar
(
t
)
‍ denotes the bump height and ‍z

(
t
)
‍ the bump center, i.e., the spatial location represented 

by the network. For convenience, we set the external input to be of the Gaussian form, which is written 

as: 
‍
Iext (x, t

)
= αexp

[
−
(
x − vextt

)2 /
(

4a2
)]

‍
, with ‍vext‍ representing the moving speed and ‍α‍ controlling 

the external input strength. Such external moving input represents location-dependent sensory inputs 
(i.e. corresponding to the animal’s physical location) which might be conveyed via the entorhinal-
hippocampal or subcortical pathways (van Strien et al., 2009). The term ‍−V

(
x, t

)
‍ represents the firing 

rate adaptation (Alonso and Klink, 1993; Fuhrmann et al., 2002; Benda and Herz, 2003; Treves, 
2004), whose dynamics is written as:

	﻿‍
τv

dV
(
x, t

)
dt

= −V
(
x, t

)
+ mU

(
x, t

)
,
‍�

(4)

where ‍m‍ controls the adaptation strength, and ‍τv‍ is the time constant. The condition ‍τv ≫ τ ‍ holds, 
implying that the firing rate adaptation is a much slower process compared to neuronal firing. In 
effect, the firing rate adaptation increases with the neuronal activity and contributes to destabilizing 
the active bump state, which induce rich dynamics of the network (see below).

Oscillatory tracking of the network
Overall, the bump motion in the network is determined by two competing factors, i.e., the external 
input and the adaptation. The interplay between these two factors leads to the network exhibiting oscil-
latory tracking in an appropriate parameter regime. To elucidate the underlying mechanism clearly, we 
explore the effects of the external input and the adaptation on bump motion separately. First, when 
firing rate adaptation does not exist in the network (‍m = 0‍), the bump tracks the external moving input 
smoothly (see Figure 2c). We refer to this as the ‘smooth tracking state’, where the internal location 
represented in the hippocampus (the bump position) is continuously tracking the animal’s physical 
location (the external input location). This smooth tracking property of CANNs has been widely used 
to model spatial navigation in the hippocampus (Tsodyks and Sejnowski, 1995; Samsonovich and 
McNaughton, 1997; McNaughton et  al., 2006; Battaglia and Treves, 1998). Second, when the 
external drive does not exist in the network (‍α = 0‍) and the adaptation strength ‍m‍ exceeds a threshold 
(‍m > τ /τv‍), the bump moves spontaneously with a speed calculated as ‍vint =

(
2a/τv

)√
mτv/τ −

√
mτv/τ ‍ 

(see Figure 2d and e and ‘Analysis of the intrinsic mobility of the bump state’ for more details). We 
refer to this as the ‘traveling wave state’, where the internal representation of location in the hippo-
campus is sequentially reactivated without external drive, resembling replay-like dynamics during a 
quiescent state (see Discussion for more details). This intrinsic mobility of the bump dynamics can be 
intuitively understood as follows. Neurons around the bump center have the highest firing rates and 
hence receive the strongest adaptation. Such strong adaptation destabilizes the bump stability at the 
current location, and hence pushes the bump away. After moving to a new location, the bump will 
be continuously pushed away by the firing rate adaptation at the new location. As a result, the bump 
keeps moving on the linear track. Similar mechanisms have been applied to explain mental explora-

tion (Hopfield, 2010), preplay during sharp wave-
ripple events in the hippocampus (Azizi et  al., 
2013), and the free memory recall phenomenon 
in the brain (Dong et al., 2021).

When both the external input and adaptation 
are applied to the CANN, the interplay between 
the extrinsic mobility (caused by the external 
input) and the intrinsic mobility (caused by the 
adaptation) will induce three different dynamical 
behaviors of the network (see Video 1 for demon-
stration), i.e., (1) when ‍m‍ is small and ‍α‍ is large, 
the network displays the smooth tracking state; 
(2) when ‍m‍ is large and ‍α‍ is small, the network 
displays the traveling wave state; (3) when both ‍m‍ 

Video 1. The title of this video is: Three dynamical 
states of Adaptive Continous Attractor Neural Network.

https://elifesciences.org/articles/87055/figures#video1

https://doi.org/10.7554/eLife.87055
https://elifesciences.org/articles/87055/figures#video1
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and ‍α‍ have moderate values, the network bump displays an interesting state, called the ‘oscillatory 
tracking state’, where the bump tracks the external moving input in an oscillatory fashion (Figure 2f 
and g). Intuitively, the mechanism for oscillatory tracking can be understood as follows. Due to the 
intrinsic mobility of the network, the bump tends to move at its own intrinsic speed (which is faster 
than the external moving input, see Figure  2d), i.e., the bump tries to escape from the external 
input. However, due to the strong locking effect of the external input, the bump cannot run too far 
away from the location input, but instead, is attracted back to the location input. Once the bump 
returns, it will keep moving in the opposite direction of the external input until it is pulled back by 
the external input again. Over time, the bump will sweep back and forth around the external moving 
input, displaying the oscillatory tracking behavior. It is noteworthy that the activity bump does not live 
within a window circumscribed by the external input bump (bouncing off the interior walls of the input 
during the oscillatory tracking state), but instead is continuously pulled back and forth by the external 
input (see Appendix 1—figure 1).

Our study shows that during oscillatory tracking, the bump shape is roughly unchanged (see 
previous sections for the condition of shape variability), and the bump oscillation can be well repre-
sented as the bump center sweeping around the external input location. The dynamics of the bump 
center can be approximated as a propagating sinusoidal wave (Figure 2f), i.e.,

	﻿‍ z
(
t
)

= c0sin
(
ωt
)

+ d0 + vextt = s
(
t
)

+ vextt,‍� (5)

where ‍z
(
t
)
‍ is the bump center at time ‍t‍ (see Equation 3). ‍s

(
t
)
‍ denotes the displacement between 

the bump center and the external input, which oscillates at the frequency ‍ω‍ with the amplitude ‍c0 > 0‍ 
and a constant offset ‍d0 > 0‍ (see ‘Analysis of the oscillatory tracking behavior of the bump state’ for 
the values of these parameters and ‘Deriving the oscillatory tracking state of the network when the 
external input is applied (Iext≠0)’ for the detailed derivation). When the firing rate adaptation is rela-
tively small, the bump oscillation frequency can be analytically solved to be (see also Appendix 1—
figure 2):

	﻿‍
ω =

√
2
√
παak

(
1 + m

)

ττv
(
J0 + 2

√
πakα

) .
‍�

(6)

We see that the bump oscillation frequency ‍ω‍ increases sublinearly with the external input strength 
‍α‍ and the adaptation strength ‍m‍ (Figure  2h and i). By setting the parameters appropriately, the 
bump can oscillate in the theta band (6–10 Hz), thus approximating the experimentally observed theta 
sweeps (see below). Notably, LFP theta is not explicitly modeled in the network. However, since theta 
sweeps are bounded by individual LFP theta cycles in experiments, they share the same oscillation 
frequency as LFP theta. For convenience, we will frequently use the term LFP theta below and study 
firing phase shift in individual oscillation cycles.

Oscillatory tracking accounts for both theta phase precession and 
procession of hippocampal place cells
In our model, the bump center and external input represent the decoded and physical positions of the 
animal, respectively, thus the oscillatory tracking of the bump around the external input naturally gives 
rise to the forward and backward theta sweeps observed empirically (Figure 3a and b; Wang et al., 
2020). Here, we show that oscillatory tracking of the bump accounts for the theta phase precession 
and procession of place cell firing.

Without loss of generality, we select the neuron at location ‍x = 0‍ as the probe neuron and examine 
how its firing phase changes as the external input traverses its firing field (Figure 3c). In the absence 
of explicitly simulated spike times, the firing phase of a neuron in each theta cycle is measured by the 
moment when the neuron reaches the peak firing rate (see ‘Spike generation from the firing rate’ for 
modeling spike times in the CANN). Based on Equations 3 and 5, the firing rate of the probe neuron, 
denoted as ‍r0

(
t
)
‍, is expressed as:

	﻿‍
r0

(
t
)

= Ar
(
t
)

exp

[
−
[
0 − z

(
t
)]2

2a2

]
= Ar

(
t
)

exp

[
−
(
vextt + c0sinωt + d0

)2

2a2

]
≡ Ar

(
t
)

exp

[
−

h
(
t
)2

2a2

]
,
‍�
(7)

https://doi.org/10.7554/eLife.87055


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Chu, Ji et al. eLife 2023;12:RP87055. DOI: https://doi.org/10.7554/eLife.87055 � 7 of 41

where ‍Ar
(
t
)
‍ is the bump height, and ‍h

(
t
)
‍ is an oscillatory moving term denoting the displacement 

between the bump center and the location of the probe neuron. It is composed of a moving signal 
‍vextt‍ and an oscillatory signal ‍c0sinωt + d0‍, with ‍c0‍ the oscillation amplitude, ‍ω‍ the frequency, and ‍d0‍ an 
oscillation offset constant. It can be seen that the firing rate of the probe neuron is determined by two 
factors, ‍Ar

(
t
)
‍ and ‍h

(
t
)
‍. To simplify the analysis below, we assume that the bump height ‍Ar

(
t
)
‍ remains 

unchanged during bump oscillations (for the case of time-varying bump height, see previous sections). 
Thus, the firing rate only depends on ‍h

(
t
)
‍, which is further determined by two time-varying terms, 

the oscillation term ‍c0sinωt‍ and the location of the 
external input ‍vextt‍. The first term contributes to 
firing rate oscillations of the probe neuron, and 
the second term contributes to the envelope of 
neuronal oscillations exhibiting a waxing-and-
waning profile over time, as the external input 
traverses the firing field (the absolute value ‍|vextt|‍ 
first decreases and then increases; see Figure 3d, 
also Video 2). Such a waxing-and-waning profile 
agrees well with the experimental data (Skaggs 
et  al., 1996). In each LFP theta cycle, the peak 
firing rate of the probe neuron is achieved when 

‍|h
(
t
)

|‍ reaches a local minima (Figure 3c and d). 
We differentiate three stages as the external input 

a 0 ms 20 ms 40 ms

60 ms 80 ms 100 ms

120 ms 140 ms 160 ms

180 ms 200 ms 220 ms

b

c

-10 -5

-2

0

2

h(
t)

0 5

-c0-d0 c0-d0x=0

-10 -5 0 5

d
Fi

rin
g 

ra
te

(h
z)

-10 -5 0 5
Theta cycles

Theta cycles Theta cycles

0

4

8

12

e

phase precession

phase procession

-4 -3 -2 -1 0

0

2

4

Th
et

a 
ph

as
e

0

4

8

12

Time(s)

R
el

at
iv

e
 L

oc
.(m

)

0 0.1 0.2 0.3 0.4
-0.5

1

5

10

15

Figure 3. Oscillatory tracking accounts for theta sweeps and theta phase shift. (a) Snapshots of the bump oscillation along the linear track in one 
theta cycle (0–140 ms). Red triangles indicate the location of the external moving input. (b) Decoded relative positions based on place cell population 
activities. The relative locations of the bump center (shown by the neural firing rates of 10 most active neurons at each timestamp) with respect to the 
location of the external input (horizontal line) in five theta cycles. See a comparison with experimental data in Wang et al., 2020, Figure 1a lower panel. 
(c) Upper panel: The process of the animal running through the firing field of the probe neuron (large black dot) is divided into three stages: the entry 
stage (green), the phase shift stage (red), and the departure stage (blue). Lower panel: The displacement between the bump center and the probe 
neuron as the animal runs through the firing field. The horizontal line represents the location of the probe neuron, which is ‍x = 0‍. (d) The firing rates 
of the probe neuron as the animal runs through the firing field. Colored points indicate firing peaks. The trace of the firing rate in the phase shift stage 
(the dashed box) is enlarged in the sub-figure on the right-hand side, which exhibits both phase precession (red points) and procession (blue points) in 
successive theta cycles. (e) The firing phase shift of the probe neuron in successive theta cycles. Red points progress to earlier phases from ‍π/2‍ to ‍−π/2‍ 
and blues points progress to later phases from ‍π/2‍ to ‍3π/2‍. The color of the dots represent the peak firing rates, which is also shown in (d).

Video 2. The title of this video is: Neuronal activities 
during bi-directional oscillatory tracking state.

https://elifesciences.org/articles/87055/figures#video2

https://doi.org/10.7554/eLife.87055
https://elifesciences.org/articles/87055/figures#video2
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passes through the probe neuron (i.e. the animal travels through the place field of the probe neuron), 
i.e.,

•	 The entry stage. As the external input enters the firing field of the probe neuron (moving from 
left to right), ‍h

(
t
)

< 0‍ always holds (Figure 3c). In this case, the peak firing rate of the probe 
neuron in each oscillatory cycle is achieved when ‍h

(
t
)
‍ reaches the maximum (i.e. ‍|h

(
t
)

|‍ reaches 
the minimum). This corresponds to ‍c0sinωt = c0‍, i.e., ‍ωt = π/2‍ (Figure 3e). This means that the 
firing phase of the probe neuron at the entry stage is constant, which agrees with experimental 
observations (O’Keefe and Recce, 1993; Skaggs et al., 1996).

•	 The phase shift stage. As the external input moves into the center of the firing field, ‍h
(
t
)

= 0‍ 
can be achieved in each oscillatory cycle (Figure 3c). Notably, it is achieved twice in each cycle, 
once as the bump sweeps over the probe neuron in the forward direction and the other as 
the bump sweeps over the probe neuron in the backward direction. Therefore, there are two 
firing peaks in each bump oscillation cycle (Figure  3d), which are expressed as (by solving 
‍vextt + c0sinωt + d0 = 0‍):

	﻿‍
ϕf = −arcsin

[
d0 + vexttf

c0

]
, ϕb = π + arcsin

[
d0 + vexttb

c0

]
,
‍�

(8)

where ‍tf ‍ and ‍tb‍ denote the moments of peak firing in the forward and backward sweeps, respec-
tively, and ‍ϕf ‍ and ‍ϕb‍ the corresponding firing phases of the probe neuron. As the external input 
travels from ‍

(
−c0 − d0

)
‍ to ‍

(
c0 − d0

)
‍, the firing phase ‍ϕf ‍ in the forward sweep decreases from ‍π/2‍ 

to ‍−π/2‍, while the firing phase ‍ϕr‍ in the backward sweep increases from ‍π/2‍ to ‍3π/2‍ (Figure 3e). 
These give rise to the phase precession and procession phenomena, respectively, agreeing well 
with experimental observations (Skaggs et al., 1996; Wang et al., 2020; Yamaguchi et al., 
2002).

•	 The departure stage. As the external input leaves the firing field, ‍h
(
t
)

> 0‍ always holds 
(Figure 3c), and the peak firing rate of the probe neuron is achieved when ‍h

(
t
)
‍ reaches its 

minimum in each oscillatory cycle, i.e., ‍c0sin
(
ωt
)

= −c0‍ with ‍ωt = π/2‍ (Figure 3e). Therefore, the 
firing phase of the probe neuron is also constant during the departure stage.

In summary, oscillatory tracking of the CANN well explains the firing phase shift of place cells when 
the animal traverses their firing fields. Specifically, when the animal enters the place field, the firing 
phase of the neuron remains constant, i.e., no phase shift occurs, which agrees with experimental 
observations (O’Keefe and Recce, 1993; Skaggs et al., 1996). As the animal approaches the center 
of the place field, the firing phase of the neuron starts to shift in two streams, one to earlier phases 
during the forward sweeps and the other to later phases during the backward sweeps. Finally, when 
the animal leaves the place field, the firing phase of the neuron stops shifting and remains constant. 
Over the whole process, the firing phase of a place cell is shifted by 180 degrees, which agrees with 
experimental observations (O’Keefe and Recce, 1993; Skaggs et al., 1996).

Different adaptation strengths account for bimodal and unimodal cells
The results above show that during oscillatory tracking, a place cell exhibits both significant phase 
precession and procession, which are associated with two firing peaks in a theta cycle. These neurons 
have been described as bimodal cells (Wang et al., 2020; Figure 4a). Conversely, previous exper-
iments have primarily focused on the phase precession of place cell firing, while tending to ignore 
phase procession, which is a relatively weaker phenomenon (O’Keefe and Recce, 1993; Skaggs 
et  al., 1996). Place cells with negligible phase procession have been described as unimodal cells 
(Figure 4b).

Here, we show that by adjusting a single parameter in the model, i.e., the adaptation strength ‍m‍, 
neurons in the CANN can exhibit either interleaved phase precession and procession (bimodal cells) 
or predominant phase precession (unimodal cells). To understand this, we first recall that the firing 
rate adaptation is a much slower process compared to neural firing and its timescale is in the same 
order as the LFP theta (i.e. ‍τv = 100‍ ms while ‍τ = 5‍ ms). This implies that when the bump sweeps over 
a neuron, the delayed adaptation it generates will suppress the bump height as it sweeps back to the 
same location. Furthermore, since the oscillatory tracking always begins with a forward sweep (as the 
initial sweep is triggered by the external input moving in the same direction), the suppression effects 

https://doi.org/10.7554/eLife.87055
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are asymmetric, i.e., forward sweeps always strongly suppress backward sweeps. On the contrary, 
the opposite effect is much smaller, since neuronal activities in backward sweeps have already been 
suppressed, and they can only generate weak adaptation. Because of this asymmetric suppression, 
the bump height in the forward sweep is always higher than that in the backward sweep (see Figure 4c 
and Appendix 1—figure 3a). When the adaptation strength ‍m‍ is small, the suppression effect is not 
significant, and the attenuation of the bump height during the backward sweep is small (Figure 4d). 
In such case, the firing behavior of a place cell is similar to the situation as the bump height remains 
unchanged as analyzed in previous sections, i.e., the neuron can generate two firing peaks in a theta 
cycle at the phase shift stage, manifesting the property of a bimodal cell of having both significant 
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Figure 4. Different adaptation strengths account for the emergence of bimodal and unimodal cells. (a) The firing rate trace of a typical bimodal cell in 
our model. Blue boxes mark the phase shift stage. Note that there are two peaks in each theta cycle. (b) The firing rate trace of a typical unimodal cell. 
Note that there is only one firing peak in each theta cycle. For a comparison to (a) and (b), see experiment data shown in Skaggs et al., 1996, Figure 6. 
(c) The averaged bump heights in the forward (blue curve) and backward windows (red curve) as a function of the adaptation strength ‍m‍. (d) Variation of 
the bump height when the adaptation strength is relatively small (blue line) or large (red line). (e and f) Relative location of the bump center in a theta 
cycle when adaptation strength is relatively small (e) or large (f). Dashed line separate the forward and backward windows. (g and h) Theta phase as a 
function of the normalized position of the animal in place field, averaged over all bimodal cells (g) or over all unimodal cells (h). –1 indicates that the 
animal just enters the place field, and 1 represents that the animal is about to leave the place field. Dashed lines separate the forward and backward 
windows. The lower panels in both (g and h) present the rescaled colormaps only in the backward window.

https://doi.org/10.7554/eLife.87055
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phase precession and procession (Figure 4e and 
g and Video  2). When the adaptation strength 
‍m‍ is large, the bump height in the backward 
sweep attenuates dramatically (see Figure  4c 
and d and the Video demonstration). As a result, 
the firing peak of a place cell in the backward 
sweep becomes nearly invisible at the phase shift 
stage, and the neuron exhibits only predominant 
phase precession, manifesting the property of a 
unimodal cell (Figure 4f and h and Video 3).

In summary, different adaptation strengths 
explain the emergence of bimodal and unimodal 

cells. In fact, there is no sharp separation between bimodal and unimodal cells. As the firing rate adap-
tation gets stronger, the network bump is more attenuated during the backward sweep, and cells with 
the bimodal firing property will gradually behave more like those with the unimodal firing property 
(see Appendix 1—figure 3b). Moreover, our model confirms that even though phase procession is 
weak, it still exists in unimodal cells (Figure 4h, lower panel), which has been reported in previous 
studies (Wang et  al., 2020; Yamaguchi et  al., 2002). This implies that phase procession is not a 
characteristic feature of bimodal cells, but instead, is likely a common feature of hippocampal activity, 
with a strength controlled by adaptation. Furthermore, the experimental data (Fernández-Ruiz et al., 
2017) has indicated that there is a laminar difference between unimodal cells and bimodal cells, with 
bimodal cells correlating more with the firing patterns of deep CA1 neurons and unimodal cells with 
the firing patterns of superficial CA1 neurons. Our model suggests that this difference may come from 
the different adaptation strengths in the two layers.

Constant cycling of multiple future scenarios in a T-maze environment
We have shown that our model can reproduce the forward and backward theta sweeps of decoded 
position when the animal runs on a linear track. It is noteworthy that there is only a single hypothet-
ical future scenario in the linear track environment, i.e., ahead of the animal’s position, and hence 
place cells firing phase can only encode future positions in one direction. However, flexible behaviors 
requires the animal encoding multiple hypothetical future scenarios in a quick and constant manner, 
e.g., during decision-making and planning in complex environments (Johnson and Redish, 2007; 
Wikenheiser and Redish, 2015). One recent study (Kay et al., 2020) showed constant cycling of 
theta sweeps in a T-maze environment (Figure 5a), i.e., as the animal approaches the choice point, 
the decoded position from hippocampal activity propagates down one of the two arms alternatively 
in successive LFP theta cycles. To reproduce this phenomenon, we change the structure of the CANN 
from a linear track shape to a T-maze shape where the neurons are aligned according to the location 
of their firing fields in the T-maze environment. Neurons are connected with a strength proportional to 
the Euclidean distance between their firing fields on the T-maze and the parameters are set such that 
the network is in the oscillatory tracking state (see details in ‘Implementation details of the T-maze 
environment’). Mimicking the experimental protocol, we let the external input (the artificial animal) 
move from the end of the center arm to the choice point. At the beginning, when the external input is 
far away from the choice point, the network bump sweeps back and forth along the center arm, similar 
to the situation on the linear track. As the external input approaches the choice point, the network 
bump starts to sweep onto left and right arms alternatively in successive theta cycles (Figure 5b and 
Video 4; see also Romani and Tsodyks, 2015, for a similar model of cyclical sweeps spanning several 
theta cycles). The underlying mechanism is straightforward. Suppose that the bump first sweeps to the 
left arm from the current location, it will sweep back to the current location first due to the attraction 
of the external input. Then in the next round, the bump will sweep to the right arm, since the neurons 
on the left arm are suppressed due to adaptation. This cycling process repeats constantly between the 
two upcoming arms before the external input enters one of the two arms (i.e. before the decision is 
made). At the single cell level, this bump cycling phenomenon gives rise to the ‘cycle skipping’ effect 
(Kay et al., 2020; Deshmukh et al., 2010; Brandon et al., 2013), where a neuron whose place field 
is on one of the two arms fires on every other LFP theta cycle before the decision is made (Figure 5c, 
left panel and Figure 5d, upper panel). For example, a pair of cells with firing fields on each of the two 

Video 3. The title of this video is: Neuronal activities 
during uni-directional oscillatory tracking state.

https://elifesciences.org/articles/87055/figures#video3

https://doi.org/10.7554/eLife.87055
https://elifesciences.org/articles/87055/figures#video3
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Figure 5. Constant cycling of future positions in a T-maze environment. (a) An illustration of an animal navigating a T-maze environment with two 
possible upcoming choices (the left and right arms). (b) Upper panel: Snapshots of constant cycling of theta sweeps on two arms when the animal is 
approaching the choice point. Red triangle marks the location of the external input. Note that the red triangle moves slightly toward the choice point in 
the 200 ms duration. Lower panel: Constant cycling of two possible future locations. The black, red, and blue traces represent the bump location on the 
center, left, and right arms, respectively. The green line marks the location of the external moving input. (c) Left panel: The firing rate trace of a neuron 
A on the left arm when the animal approaches the choice point. Right panel: The firing rate traces of a pair of neurons when the animal approaches the 
choice point, with neuron A (red) on the left arm and neuron B (blue) on the right arm. Dashed lines separate theta cycles. (d) Upper panel: The auto-
correlogram of the firing rate trace of probe neuron A. Lower panel: The cross-correlogram between the firing rate trace of neuron A and the firing rate 
trace of neuron B.

https://doi.org/10.7554/eLife.87055
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arms will fire in regular alternation on every other 
theta cycle (Figure 5c, right panel and Figure 5d, 
lower panel). These cell-level firing patterns agree 
well with the experimental observations (Kay 
et al., 2020).

In summary, our model, extended to a T-maze 
structure, explains the constant cycling of two 
possible future scenarios in a T-maze environment. 
The underlying mechanism relies on delayed 
adaptation, which alternately causes neurons 
on one arm to be more suppressed than those 
on the other arm. Such high-speed cycling may 
contribute to the quick and continuous sampling 
among multiple future scenarios in real-world 
decision-making and planning. We also note 
that there is a cyclical effect in the sweep lengths 
across oscillation cycles before the animal enters 
the left or right arm (see Figure 5b, lower panel), 

which may be interesting to check in the experimental data in future work (see Discussion for more 
details).

Robust phase coding of position with place cells
As the firing rate shows large variability when the animal runs through the firing field (Fenton and 
Muller, 1998), it has been suggested that the theta phase shift provides an additional mechanism to 
improve the localization of animals (O’Keefe and Burgess, 2005). Indeed, Jensen and Lisman, 2000, 
showed that taking phase into account leads to a significant improvement in the accuracy of local-
izing the animal. To demonstrate the robustness of phase coding, previous experiments showed two 
intriguing findings: a linear relationship between the firing frequency of place cells and the animal’s 
moving speed (Geisler et al., 2007), and the continued phase shift after interruption of hippocampal 
activity (Zugaro et al., 2005). We show that our model can also reproduce these two phenomena.

To investigate the relationship between the single cell’s oscillation frequency and the moving 
speed as the animal runs through the firing field, we consider a unimodal cell with predominant 
phase precession as studied in Geisler et al., 2007. As we see from Figure 3d and Figure 4a and 
b, when the animal runs through the firing field of a place cell, the firing rate oscillates because the 
activity bump sweeps around the firing field center. Therefore, the firing frequency of a place cell has 
a baseline theta frequency, which is the same as the bump oscillation frequency. Furthermore, due 
to phase precession, there will be half a cycle more than the baseline theta cycles as the animal runs 
over the firing field, and hence single-cell oscillatory frequency will be higher than the baseline theta 
frequency (Figure 6a). The faster the animal runs, the faster the extra half cycle can be accomplished. 

Video 4. The title of this video is: Bump oscillation in 
T-maze environment.

https://elifesciences.org/articles/87055/figures#video4
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Consequently, the firing frequency will increase more (a steeper slope in Figure 6a, red dots) than 
the baseline frequency. This linear relationship ensures that the firing phase of a unimodal cell in 
each theta cycle is locked with the relative location of the animal in the firing field of that cell, which 
supports a robust phase-position code. Notably, in our model, the speed modulation of the place 
cells’ firing frequency is not the cause of theta phase shift, but rather a result of oscillatory tracking. 
This is different from the dual oscillator model (Lengyel et  al., 2003), which assumes that phase 
precession is caused by a speed-dependent increase in the dendritic oscillation frequency (see Discus-
sion for more details).

In a different experiment, Zugaro et al., 2005, found that the firing phase of a place cell continues 
to precess even after hippocampal activity was transiently silenced for up to 250 ms (around 2 theta 
cycles). To reproduce this phenomenon, we also study a unimodal cell by manually turning off the 
network activity for a few hundred milliseconds (by setting ‍r

(
x, t

)
= 0‍ for all neurons) and then letting 

the network dynamics evolves again with all parameters unchanged. Based on the theoretical analysis 
(Equation 8), we see that the firing phase is determined by the location of the animal in the place 
field, i.e., ‍vextt‍. This means that the firing phase keeps tracking the animal’s physical location. No 
matter how long the network is inactivated, the new firing phase will only be determined by the new 
location of the animal in the place field. Therefore, the firing phase in the first bump oscillation cycle 
after the network perturbation is more advanced than the firing phase in the last bump oscillation 
cycle right before the perturbation, and the amount of precession is similar to that in the case without 
perturbation (Figure 6c). This agrees well with the experimental observation (Zugaro et al., 2005), 
and indicates that the phase-position code is robust to the perturbation of the hippocampal dynamics.

Overall, our model reproduces these two experimental findings, and suggests that there exists a 
one-to-one correspondence between the firing phase of a place cell and the traveled distance in the 
neuron’s place field, which is independent of the animal’s running speed or the perturbation duration 
(Appendix 1—figure 4). This agrees well with experimental observations (O’Keefe and Recce, 1993) 
that theta phase correlates better with the animal’s location than with time (Figure 6). In addition 
to the results for unimodal cells as introduced above, our model predicts new results for bimodal 
cells. First, in contrast to a unimodal cell, a bimodal cell will have two peaks in its firing frequency, 
with one slightly higher than the LFP theta baseline (due to phase precession) and the other slightly 
lower than the LFP theta baseline (due to phase procession). The precession-associated frequency 
positively correlates with the running speed of the animal, while the procession-associated frequency 
negatively correlates with the running speed (Figure 6b). Second, similar to the preserved phase shift 
in unimodal cells, both the phase precession and procession of a bimodal cell after transient intra-
hippocampal perturbation continue from the new location of the animal (see Appendix 1—figure 5), 
no matter how long the silencing period lasts. The two predictions could be tested by experiments.

Discussion
Model contributions
In this paper, we have proposed a CANN with firing rate adaptation to unveil the underlying mecha-
nism of place cell phase shift during locomotion. We show that the interplay between intrinsic mobility 
(owing to firing rate adaptation) and extrinsic mobility (owing to the location-dependent sensory 
inputs) leads to an oscillatory tracking state, which naturally accounts for theta sweeps where the 
decoded position oscillates around the animal’s physical location at the theta rhythm. At the single 
neuron level, we show that the forward and backward bump sweeps account for, respectively, phase 
precession and phase procession. Furthermore, we show that the varied adaptation strength explains 
the emergence of bimodal and unimodal cells, i.e., as the adaptation strength increases, forward 
sweeps of the bump gradually suppress backward sweeps, and as a result, neurons initially exhibiting 
both significant phase precession and procession (due to a low-level adaptation) will gradually exhibit 
only predominant phase precession (due to a high-level adaptation).

Computational models for theta phase shift and theta sweeps
As a subject of network dynamics, oscillatory tracking has been studied previously in an excitatory-
inhibitory neural network (Folias and Bressloff, 2004), where it was found that decreasing the external 
input strength can lead to periodic emission of traveling waves in the network (Hopf instability), which 

https://doi.org/10.7554/eLife.87055
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is analogous to the oscillatory tracking state in our model. However, their focus was on the mathemat-
ical analysis of such dynamical behavior, while our focus is on the biological implications of oscillatory 
tracking, i.e., how can it be linked to phase precession and procession of hippocampal place cells.

Due to their potential contributions to the temporal sequence learning involved in spatial navi-
gation and episodic memory (Mehta et  al., 1997; Mehta et  al., 2002; Yamaguchi, 2003), theta 
phase precession and forward theta sweeps have been modeled in the field for decades. These 
models can be divided into two main categories, with one relying on the mechanism of single-cell 
oscillation (O’Keefe and Recce, 1993; Kamondi et al., 1998; Lengyel et al., 2003; O’Keefe and 
Burgess, 2005; Mehta et al., 2002) and the other relying on the mechanism of recurrent interactions 
between neurons (Tsodyks et al., 1996; Romani and Tsodyks, 2015; Kang and DeWeese, 2019). 
A representative example of the former is the oscillatory interference model (O’Keefe and Recce, 
1993; Lengyel et al., 2003), which produces phase precession via the superposition of two oscilla-
tory signals, with one from the baseline somatic oscillation at the LFP theta frequency (reflecting the 
inputs from the medial septal pacemaker; Stewart and Fox, 1990), and the other from the dendritic 
oscillation whose frequency is slightly higher. While these models can explain a large variety of exper-
imental phenomena, it remain unclear how oscillation of individual neurons has a frequency higher 
than the baseline theta frequency. Here, our model provides a network mechanism for how such 
higher-frequency oscillation emerges.

A representative model relying on neuronal recurrent interactions is the activation spreading model 
(Tsodyks et al., 1996). This model produces phase precession via the propagation of neural activity 
along the movement direction, which relies on asymmetric synaptic connections. A later version of 
this model considers short-term synaptic plasticity (short-term depression) to implicitly implement 
asymmetric connections between place cells (Romani and Tsodyks, 2015), and reproduces many 
other interesting phenomena, such as phase precession in different environments. Different from 
these two models, our model considers firing rate adaptation to implement symmetry breaking and 
hence generates activity propagation. To prevent the activity bump from spreading away, their model 
considers an external theta input to reset the bump location at the end of each theta cycle, whereas 
our model generates an internal oscillatory state, where the activity bump travels back due to the 
attraction of external location input once it spreads too far away. Moreover, theoretical analysis of our 
model reveals how the adaptation strength affects the direction of theta sweeps, as well as offers a 
more detailed understanding of theta cycling in complex environments.

Based on our simulation, both STD and SFA show the ability to produce bi-directional sweeps 
within a CANN model, with the SFA uniquely enabling uni-directional sweeps in the absence of 
external theta inputs. This difference might be due to the lack of exhaustive exploration of the entire 
parameter space. However, it might also attribute to the subtle yet important theoretical distinc-
tions between STD and SFA. Specifically, STD attenuates the neural activity through a reduction in 
recurrent connection strength, whereas SFA provides inhibitory input directly to the neurons, poten-
tially impacting all excitatory inputs. These differences might explain the diverse dynamical behav-
iors observed in our simulations. Future experiments could clarify these distinctions by monitoring 
changes in synaptic strength and inhibitory channel activation during theta sweeps.

Beyond the linear track environment
Besides the linear track environment, the mechanism of generating theta sweeps proposed in our 
model can also be generalized to more complex environments. For instance, in a T-maze environment, 
our model explains the constant cycling of theta sweeps between left and right arms. Such cycling 
behavior may be important for high-speed actions such as predating and escaping which require 
animals to make decision among several future scenarios at the sub-second level. Similar alterna-
tive activity sweeps in the T-maze environment has been studied in a previous paper (Romani and 
Tsodyks, 2015), which showed that the frequency of alternation correlates with overtly deliberative 
behaviors such as head scans (frequency at 1 Hz or less) (Johnson and Redish, 2007). In contrast to 
our model, the network activity in their model propagates continuously from the current location 
on the center arm till the end of the outer arm, which takes a few theta cycles (i.e. 1 s or more). In 
our model, the network bump alternately sweeps to one of the two outer arms at a much higher 
frequency (∼ 8 Hz), which may be related to fast decision-making or planing in natural environments 
(Kay et al., 2020). Furthermore, our model can also be easily extended to the multiple-arms (>2) 
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environment (Gillespie et al., 2021) or the cascade-T environment (Johnson and Redish, 2007) with 
the underlying mechanism of generating theta cycling remaining unchanged. In addition to the linear 
and T-maze environments, phase shift has also been reported when an animal navigates in an open 
field environment. However, due to the lack of recorded neurons, decoding theta sweeps in the 2D 
environment is not as straightforward as in the 1D case. While theta sweeps in the 1D case have been 
associated with goal-directed behaviors and spatial planning (Wikenheiser and Redish, 2015), it 
remains unclear whether such conclusion is applicable to the 2D case. Our preliminary result shows 
that in the 2D CANN where neurons are arranged homogeneously according to their relative firing 
locations, the activity bump will sweep along the tangent direction of the movement trajectory, similar 
to the 1D case (see ‘Oscillatory tracking in the 2D CANN – modeling theta sweeps in the open field 
environment’ and Appendix 1—figure 6 for details). It will be interesting to explore theta sweeps in 
the open field environment in detail when more experimental data is available.

Model predictions and future works
Our model has several predictions which can be tested in future experiments. For instance, the height 
of the activity bump in the forward sweep window is higher than that in the backward sweep window 
(Figure 4c) due to the asymmetric suppression effect from the adaptation. For bimodal cells, they 
will have two peaks in their firing frequency as the animal runs across the firing fields, with one corre-
sponding to phase precession and the other corresponding to phase procession. Similar to unimodal 
cells, both the phase precession and procession of a bimodal cell after transient intrahippocampal 
perturbation will continue from the new location of the animal (Appendix 1—figure 7). Interestingly, 
our model of the T-maze environment showed an expected phenomenon that as the animal runs 
toward the decision point, the theta sweep length also shows cyclical patterns (Figure  5b, lower 
panel). An intuitive explanation is that, due to the slow dynamics in firing rate adaptation (with a large 
time constant compared to neural firing), a long sweep leads to an adaptation effect on the neurons at 
the end of the sweep path. Consequently, the activity bump cannot travel as far due to the adaptation 
effect on those neurons, resulting in a shorter sweep length compared to the previous one. In the next 
round, the activity bump exhibits a longer sweep again because those neurons have recovered from 
the previous adaptation effect. We plan to test this phenomenon in future experiments.

In the current study, we have modeled the place cell population in the hippocampus with a CANN 
and adopted firing rate adaptation to generate theta phase shift. In fact, this model can be easily 
extended to the grid cell population without changing the underlying mechanism. For instance, we 
can induce the torus-like connection profile (periodic boundary in the 2D space) (Samsonovich and 
McNaughton, 1997; McNaughton et al., 2006) or the locally inhibitory connection profile (Burak 
and Fiete, 2009; Couey et al., 2013) in the CANN structure to construct a grid cell model, and by 
imposing firing rate adaptation, neurons in the grid cell network will also exhibit phase shift as the 
animal moves through the grid field, as reported in previous experimental studies (Hafting et al., 
2008; van der Meer and Redish, 2011). Notably, although for both grid cells and place cells, CANNs 
can generate theta phase shift, it does not mean that they are independent from each other. Instead, 
they might be coordinated by the same external input from the environment, as well as by the medial 
septum which is known to be a pacemaker that synchronizes theta oscillations across different brain 
regions (King et al., 1998; Wang, 2002). We will investigate this issue in future work.

Our model also suggests that the ‘online’ theta sweep and the ‘offline’ replay may share some 
common features in their underlying mechanisms (Romani and Tsodyks, 2015; Hopfield, 2010; 
Kang and DeWeese, 2019; Jahnke et al., 2015). We have shown that the activity bump with strong 
adaptation can move spontaneously when the external input becomes weak enough (see previous 
sections). Such non-local spreading of neural activity has a speed much faster than the conventional 
speed of animals (the external input speed in our model, see Figure 2d), which resembles the fast 
spreading of the decoded position during sharp wave-ripple events (Diba and Buzsáki, 2007; Foster 
and Wilson, 2006; Karlsson and Frank, 2009; Dragoi and Tonegawa, 2011). This indicates that 
these two phenomena may be generated by the same neural mechanism of firing rate adaptation, 
with theta sweeps originating from the interplay between the adaptation and the external input, 
while replay originating from only the adaptation, since the external input is relatively weak during 
the ‘offline’ state. This hypothesis seems to be supported by the coordinated emergence of theta 
sequences and replays during the post-natal development period (Muessig et al., 2019), as well as 
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their simultaneous degradation when the animal traveled passively on a model train (Drieu et al., 
2018).

Nevertheless, it is important to note that the CANN we adopt in the current study is an idealized 
model for the place cell population, where many biological details are missed (Amari, 1977; Tsodyks 
and Sejnowski, 1995; Samsonovich and McNaughton, 1997; Tsodyks, 1999). For instance, we have 
assumed that neuronal synaptic connections are translation-invariant in the space. In practice, such a 
connection pattern may be learned by a synaptic plasticity rule at the behavioral timescale when the 
animal navigates actively in the environment (Bittner et al., 2017). In future work, we will explore the 
detailed implementation of this connection pattern, as well as other biological correspondences of 
our idealized model, to establish a comprehensive picture of how theta phase shift is generated in 
the brain.

Materials and methods
General summary of the model
We consider a 1D CANN, in which neurons are uniformly aligned according to their firing fields on a 
linear track (for the T-maze case, see ‘Implementation details of the T-maze environment’ below; for 
the case of the open field (2D CANN), see ‘Oscillatory tracking in the 2D CANN – modeling theta 
sweeps in the open field environment’). Denote ‍U

(
x, t

)
‍ the synaptic input received by the place cell at 

location ‍x‍, and ‍r
(
x, t

)
‍ the corresponding firing rate. The dynamics of the network is written as:

	﻿‍
τ

dU(x, t)
dt

= −U(x, t) + ρ

ˆ ∞

−∞
J(x, x′)r(x′, t)dx′ − V(x, t) + Iext(x, t),

‍�
(9)

where ‍τ ‍ is the time constant of ‍U
(
x, t

)
‍ and ‍ρ‍ the neuron density. The firing rate ‍r

(
x, t

)
‍ is given by:

	﻿‍
r(x, t) = gU(x, t)2

1 + kρ
´∞
−∞ U(x′, t)2 dx′

,
‍�

(10)

where ‍k‍ controls the strength of the global inhibition (divisive normalization), ‍g‍ denotes a gain factor. 

‍J
(
x, x′

)
‍ denotes the connection weight between place cells at location ‍x‍ and ‍x′‍, which is written as:

	﻿‍
J
(
x, x′

)
= J0√

2πa
exp

[
−
(
x − x′

)2

2a2

]
,
‍�

(11)

where ‍J0‍ controls the strength of the recurrent connection and ‍a‍ the range of neuronal interaction. 
Notably, ‍J

(
x, x′

)
‍ depends on the relative distance between two neurons, rather than the absolute 

locations of neurons. Such translation-invariant connection form is crucial for the neutral stability of 
the attractor states of CANNs (Wu et al., 2016). ‍I

ext (x, t
)
‍ represents the external input which conveys 

the animal location information to the hippocampal network, which is written as:

	﻿‍
Iext (x, t

)
= αexp

[
−
(
x − vextt

)2

4σ2

]
,
‍�

(12)

with ‍vext‍ denoting the animal’s running speed and ‍α‍ controlling the input strength to the hippo-
campus. ‍σ‍ denotes the width of the external input ‍Iext‍, which is set to be equal to the recurrent 
connection width ‍a‍ in the main text and the following derivation. ‍V

(
x, t

)
‍ denotes the adaptation effect 

of the place cell at location ‍x‍, which increases with the synaptic input (and hence the place cell’s firing 
rate), i.e.,

	﻿‍
τv

dV
(
x, t

)
dt

= −V
(
x, t

)
+ mU

(
x, t

)
,
‍�

(13)

with ‍τv‍ denoting the time constant of ‍V
(
x, t

)
‍ and ‍m‍ the adaptation strength. Note that ‍τv ≫ τ ‍, 

meaning that adaptation is a much slower process compared to the neural firing.
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Stability analysis of the bump state
We derive the condition under which the bump activity is the stable state of the CANN. For simplicity, 
we consider the simplest case that there is no external input and adaptation in the network, i.e., 
‍m = α = 0‍. In this case, the network state is determined by the strength of the recurrent excitation and 
global inhibition. When the global inhibition is strong (‍k‍ is large), the network is silent, i.e., no bump 
activity emerges in the CANN. When the global inhibition is small, an activity bump with the Gaussian-
shaped profile emerges, which is written as:

	﻿‍
U
(
x, t

)
= Auexp

{
−
[
x − z

(
t
)]2

4a2

}
,
‍�

(14)

	﻿‍
r̄
(
x, t

)
= Arexp

{
−
[
x − z

(
t
)]2

2a2

}
,
‍�

(15)

with ‍Au‍ and ‍Ar‍ representing the amplitudes of the synaptic input bump and the firing rate bump, 
respectively. ‍z

(
t
)
‍ represents the bump center, and ‍a‍ is the range of neuronal interaction (defined in 

‘General summary of the model’). To solve the network dynamics, we substitute Equations 14 and 15 
into Equations 9 and 10, which gives (see ‘Deriving the network state when the external input does 
not exist (Iext = 0)’ for more details of the derivation):

	﻿‍
τ

dAu
dt

= −Au + ρJ0√
2

Ar,
‍�

(16)

	﻿‍
Ar = A2

u

1 +
√

2πkρaA2
u

,
‍�

(17)

These two equations describe how the bump amplitudes change with time. For instance, if neurons 
are weakly connected (small ‍J0‍) or they are connected sparsely (small ‍ρ‍), the second term on the right-
hand side of Equation 16 is small, and ‍Au‍ will decay to zero, implying that the CANN cannot sustain 
a bump activity. By setting ‍dAu/dt = 0‍, we obtain:

	﻿‍
Au =

ρJ0 ±
√

ρ2J2
0 − 8

√
2π2kρa

4
√
πkρa

,
‍�

(18)

	﻿‍
Ar =

√
2

ρJ0
Au.

‍�
(19)

It is straightforward to check that only when:

	﻿‍ k < kc = ρJ2
0/8

√
2πa,‍� (20)

‍Au‍ have two real solutions (indicated by the ± sign in Equation 18), i.e., the dynamic system (Equations 

16 and 17) has two fixed points. It can be checked that only 
‍
Au =

(
ρJ0 +

√
ρ2J2

0 − 8
√

2π2kρa
)

/
(
4
√
πkρa

)
‍
 

is the stable solution.

Analysis of the intrinsic mobility of the bump state
We derive the condition under which the bump of the CANN moves spontaneously in the attractor 
space without relying on external inputs. As the adaptation strength increases, the bump activity 
becomes unstable and has tendency to move away from its location spontaneously. Such intrinsic 
mobility of the CANN has been shown in previous studies (Bressloff, 2012; Wu et al., 2016; Mi et al., 
2014). We set ‍α = 0‍ (no external input), and investigate the effect of adaptation strength ‍m‍ on the 
bump dynamics. Our simulation result shows that during the spontaneous movement, ‍V

(
x, t

)
‍ can also 

be represented by a Gaussian-shaped bump, which is written as:

	﻿‍
V
(
x, t

)
= Avexp

{
−
[
x − z

(
t
)

+ d
(
t
)]2

4a2

}
,
‍�

(21)
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where ‍Av‍ denotes the amplitude of the adaptation bump, and ‍d
(
t
)
‍ the displacement between the 

bump centers of ‍U
(
x, t

)
‍ and ‍V

(
x, t

)
‍. This displacement originates from the slow dynamics of adap-

tation, which leads to the adaptation bump always lags behind the neural activity bump. Similar to 
‘Stability analysis of the bump state’, we substitute the bump profiles Equations 14, 15, 21 into the 
network dynamics Equations 9, 10, 13, and obtain:

	﻿‍
τ

[
Au

x − z
2a2

dz
dt

+ dAu
dt

]
N
(
x, z, 2a

)
=
(
−Au + ρJ0√

2
Ar

)
N
(
x, z, 2a

)
− AvN

(
x, z − d, 2a

)
,
‍�

(22)

	﻿‍
Ar = A2

u

1 + kρ
√

2πaA2
u

,
‍�

(23)

	﻿‍
τv

[
Av

x − z + d
2a2

d
(
z − d

)
dt

+ dAv

dt

]
N
(
x, z − d, 2a

)
= −AvN

(
x, z − d, 2a

)
+ mAuN

(
x, z, 2a

)
,
‍�

(24)

where 
‍
N
(
x, z, 2a

)
= exp

{
−
[
x − z

]2 /4a2
}

‍
.

At first glance, the resulting equations given by Equations 22 and 24 may seem intractable due 
to the high dimensionality (i.e. ‍2N ‍, where ‍N ‍ is the number of neurons in the network). However, a key 
property of CANNs is that their dynamics are dominated by a few motion modes, which correspond 
to distortions of the bump shape in terms of height, position, width, etc. (Fung et  al., 2010). By 
projecting the network dynamics onto its dominant motion modes (Fung et al., 2010) (which involves 
computing the inner product of a function ‍f

(
x
)
‍ with a mode ‍un

(
x
)
‍), we can significantly simplify the 

network dynamics. Typically, projecting onto the first two motion modes is sufficient to capture the 
main features of the dynamics, which are given by:

	﻿‍
u0(x, t) = exp

{
−
[
x − z

(
t
)]2

4a2

}
,
‍�

(25)

	﻿‍
u1(x, t) =

[
x − z

(
t
)]

exp

{
−
[
x − z

(
t
)]2

4a2

}
.
‍�

(26)

By projecting the network dynamics onto these two motion modes, we obtain:

	﻿‍
−Au + ρJ0√

2
Ar − Avexp

(
− d2

8a2

)
= 0,

‍�
(27)

	﻿‍
τAuvint = dAvexp

(
− d2

8a2

)
,
‍�

(28)

	﻿‍

d
4a2 τvAvexp

(
− d2

8a2

)
vint = −Avexp

(
− d2

8a2

)
+ mAu,

‍�
(29)

	﻿‍
τv

(
1 − d2

4a2

)
vint = d.

‍�
(30)

Note that we assume that the bump height keep as constant over time, i.e., ‍dAu/dt = dAv/dt = 0‍ is 
assumed. Equations 27–30 describe the relationships between bump features ‍Au, Ar, Av,vint‍, and ‍d‍, 
where ‍vint = dz/dt‍ representing the intrinsic moving speed of the bump center. By solving these equa-
tions together with Equation 23, we obtain:

	﻿‍

Au =
ρJ0 +

√
ρ2J2

0 − 8
√

2πkρa
(

1 +
√

mτ

τv

)2

4
√
πkρa

(
1 +

√
mτ

τv

) ,

‍�

(31)
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	﻿‍
Ar =

ρJ0 +

√
ρ2J2

0 − 8
√

2πkρa
(

1 +
√

mτ

τv

)2

2
√

2πkρ2aJ0
,
‍�

(32)

	﻿‍

Av =
√

mτ

τv
exp




1 −
√

τ

mτv

2



ρJ0 +

√
ρ2J2

0 − 8
√

2πkρa
(

1 +
√

mτ

τv

)2

4
√
πkρa

(
1 +

√
mτ

τv

) ,

‍�

(33)

	﻿‍
d = 2a

√
1 −

√
τ

mτv
,
‍�

(34)

	﻿‍
vint = 2a

τv

√
mτv
τ

−
√

mτv
τ

.
‍�

(35)

Equations 31–33 describe the amplitudes of the bumps of synaptic input, firing rate, and adap-
tation in the CANN, respectively, and Equation 34 describes the displacement between the neural 
activity and adaptation bumps. From Equation 35, we see that for the bump to travel spontaneously, 
it requires ‍m > τ /τv‍, i.e., the adaptation strength is larger than a threshold given by the ratio between 
two time constants ‍τ ‍ and ‍τv‍. As the adaptation strength increases (larger ‍m‍), the traveling speed of 
the bump increases (larger ‍vint‍).

Analysis of the oscillatory tracking behavior of the bump state
When both the external input and the adaptation are applied to the CANN, the bump activity can oscil-
late around the external input if the strengths of the external input and the adaptation are appropri-
ated. The simulation shows that during the oscillatory tracking, the bump shape is roughly unchanged, 
and the oscillation of the bump center can be approximated as a sinusoidal wave expressed as:

	﻿‍ z
(
t
)

= c0sin
(
ωt
)

+ d0 + vextt,‍� (36)

where ‍c0‍ and ‍ω‍ denote, respectively, the oscillation amplitude and frequency, and ‍d0‍ denotes a 
constant offset between the oscillation center and the external input.

Similar to the analysis in ‘Analysis of the intrinsic mobility of the bump state’, we substitute the 
expression of ‍z

(
t
)
‍ (Equation 36) into Equations 14, 15, 21, and then simplify the network dynamics 

by applying the projection method (see ‘Deriving the oscillatory tracking state of the network when 
the external input is applied (Iext≠0)’ for more detailed derivation). We obtain:

	﻿‍

(
m + 1

)
Au −

ρJ0√
2

A2
u

1 +
√

2πakρA2
u
− α = 0,

‍�
(37)

	﻿‍
ω2 = α

ττvAu
,
‍� (38)

	﻿‍
mAuexp

(
− d2

8a2

)
= Av,

‍�
(39)

	﻿‍ d0 = τvv,‍� (40)

	﻿‍

√
2
(
τAu + ατv

)
ατv

[
4a2

(
ln τvmAu
τAu + ατv

)
− τ2

vv2
]

= c0,
‍�

(41)

Equations 37–41 describe the relationships among six oscillation features ‍Au, Ar, Av, c0, d0‍, and ‍ω‍. 
By solving these equations, we obtain:

	﻿‍
Au = J0 + 2

√
πakα

2
√
πak

(
1 + m

) ,
‍�

(42)

	﻿‍
Ar = A2

u

1 +
√

2πakρA2
u

,
‍�

(43)
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	﻿‍
Av =

√(
τAu + ατv

τv

)
mAu,

‍�
(44)

	﻿‍
c0 = Av

√
2

αmAu

[
8a2ln mAu

Av
− τ2

vv2
]

,
‍�

(45)

	﻿‍ d0 = τvv,‍� (46)

	﻿‍
ω =

√
α

ττvAu
.
‍�

(47)

It can be seen from Equation 45 that for the bump activity to oscillate around the external input 
(i.e. the oscillation amplitude ‍c0 > 0‍), it requires that ‍8a2ln

(
mAu/Av

)
− τ2

vv
2 > 0‍. This condition gives 

the boundary (on the parameter values of the input strength ‍α‍ and the adaptation strength ‍m‍) 
that separate two tracking states, i.e., smooth tracking and oscillatory tracking (see Figure 2g and 
Appendix 1—figure 8 for the comparison between the simulation results and theoretical results).

Note that to get the results in Equations 37–41, we have assumed that the amplitudes of neural 
activity bumps and the adaptation bump remain unchanged during the oscillation (i.e. ‍Au, Av, Ar‍ are 
constants). However, this assumption is not satisfied when the SFA strength ‍m‍ is large (see previous 
sections and Figure 4). In such a case, we carry out simulation to analyze the network dynamics.

Implementation details of the linear track environment
For the linear track environment, we simulate an 1D CANN with 512 place cells topographically orga-
nized on the 1D neuronal track. Since we are interested in how the neuronal firing phase shifts as the 
animal moves through the firing field of a place cell, we investigate the place cell at location ‍x = 0‍ 
and ignore the boundary effect, i.e., we treat the linear track with the infinite length. The neural 
firing time constant is set to be 3 ms, while the time constant of spike frequency adaptation is much 
longer, which is set to be 144 ms. The density of place cells on the linear track is set to be ‍256/π‍. The 
excitatory interaction range of place cells is set to be ‍0.4m‍, while the maximum excitatory connection 
strength ‍J0‍ is set to be 0.2. The gain factor is set to be 5. The global inhibition strength ‍k‍ is set to be 
5. The moving speed of the virtual animal ‍vext‍ is set to be 1.5 m/s. For the simulation details, we use 
the first-order Euler method with the time step ‍δt‍ set to be 0.3, the duration of simulation ‍T ‍ set to 
be 10 s. These parameters are commonly used in all plots related to the linear track environment (see 
Appendix 1—table 1 for a summary).

For the two key parameters, i.e., the external input strength ‍α‍ and the adaptation strength ‍m‍, we 
vary their values in different plots. Specifically, for illustrating the smooth tracking state in Figure 2c, 
we set ‍α = 0.19‍ and ‍m = 0‍. For illustrating the traveling wave state (intrinsic mobility of the bump state) 
in Figure 2d, we set ‍α = 0‍ and ‍m = 0.31‍. For plotting the relationship between the intrinsic speed ‍vint‍ 
and the adaptation strength ‍m‍ shown in Figure 2e, we keep ‍α = 0‍, but vary ‍m‍ in the range between 0 
and 0.1 with a step of 0.05. For plotting the overall phase diagram including all three moving states as 
shown in Figure 2g, we vary ‍α‍ in the range between 0.05 and 0.16 with a step of 0.001, and ‍m‍ in the 
range between 0.9 and 1.8 with a step of 0.01. To generate bimodal cell firing patterns in Figure 3a 
and Figure 4a, e, and g, we choose ‍α = 0.19‍ and ‍m = 3.02‍. To generate unimodal firing patterns in 
Figure 4b, f, and h, we choose ‍α = 0.19‍ but a relatively larger adaptation strength with ‍m = 3.125‍. The 
values of these two parameters in different plots are summarized in Appendix 1—table 2.

Implementation details of the T-maze environment
Parameter configurations during simulation
To simulate the T-maze environment, we consider a CANN in which place cells are topographically 
organized in a T-shaped area which consists of a vertical central arm and two horizontal left and right 
arms (Figure 5a). The width of the central arm is set to be 0.84 m and the length is set to be 3.14 m. 
The widths of the two horizontal arms are also set to be 0.84 m, while the lengths of both arms are set 
to be 2.36 m. The connection strength between two neurons is determined by the distance between 
them, which is written as:

	﻿‍
J
(
x, x′; y, y′

)
= J0

2πa2 exp

[
−
(
x − x′

)2 +
(
y − y′

)2

2a2

]
.
‍� (48)
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Here, ‍
(
x, y

)
‍ and ‍

(
x′, y′

)
‍ represent the coordinates of two neurons in the T-maze environment, ‍a‍ is 

the recurrent connection range which is set to be 0.3, and ‍J0‍ controls the connection strength which 
is set to be 0.0125. Since we are interested in investigating theta sweeps when the animal is running 
on the central arm toward the junction point, the external input is restricted on the central arm which 
is modeled by a Gaussian-like moving bump written as:

	﻿‍
Iext (x, y

)
= αexp

[
−
(
x − x0

)2 +
(
y − y0

)2

2a2

]
,
‍�

(49)

where ‍x0 = 0‍ and ‍y0 = vextt‍ represent the center location of the external input with a moving speed 
‍vext = 1.5‍ m/s. In the simulation, we used the first-order Euler method with the time step ‍δt = 0.3‍ s and 
the duration of simulation T = 4.2 s. The parameters used are summarized in Appendix 1—table 3.

Calculating auto-correlogram and cross-correlogram
To show the ‘cycle skipping’ effect of a single place cell in the T-maze environment, we calculate the 
auto-correlogram of the firing rate trace of a place cell whose firing field encodes a location on the 
left arm (the upper panel in Figure 5d). Assume the firing trace of the place cell is ‍f

(
t
)
‍ (shown in left 

panel in Figure 5c), the auto-correlogram is calculated as:

	﻿‍

(
f ∗ f

) (
τ
) ∆=
ˆ ∞

−∞
f
(
t
)

f
(
t + τ

)
dt,

‍�
(50)

where ‍τ ‍ represents the time offset.
To show the ‘alternative cycling’ effect of a pair of place cells with each of them encoding a loca-

tion on each of the two outward arms, we calculate the cross-correlogram between their firing traces 
(the lower panel in Figure 5d). It measures the similarity of the two firing traces as a function of the 
temporal offset of one relative to the other. Assume the firing traces of the two place cells are ‍f

(
t
)
‍ and 

‍g
(
t
)
‍, respectively, the cross-correlogram is calculated as:

	﻿‍

(
f ∗ g

) (
τ
) ∆=
ˆ ∞

−∞
f
(
t
)

g
(
t + τ

)
dt,

‍�
(51)

where ‍τ ‍ represents the time offset.

Details of generating the probability heatmap of theta phase shift
In Figure 4g and h we described the smoothed probability heatmaps of theta phase versus normal-
ized position in the place field of both bimodal and unimodal cells. Generally, these two plots are 
similar to the traditional spike plot of phase and position traveled in the place field (O’Keefe and 
Recce, 1993; Skaggs et al., 1996). However, in our rate-based model, the phase of neuronal spike 
is not directly modeled, rather we use the phase of firing rate peak to represent the phase shift in 
neuronal firing. Here, we describe the implementation details of generating the heatmaps.

The x-axis denotes the normalized position in the place field, with –1 representing the position 
where the animal just enters the place field, and 1 representing the position where the animal just 
leaves the place field. In our simulation, the firing field of a place cell with preferred location at ‍x0‍ is 
defined as ‍x ∈

(
x0 − 2.5 ∗ a, x0 + 2.5a

)
‍, with ‍a‍ roughly the half size of the firing field. Consider the animal 

is at ‍xt‍ at time ‍t‍ (note that ‍xt = vextt‍), then its normalized position ‍xt‍ is calculated as ‍xt =
(
xt − x0

)
/
(
5a

)
‍. 

The y-axis represents the phase of neuronal activity, which is in the range of (0°, 720°). To calculate the 
phase at every time step, we divide the duration of the animal traversing the linear track into multiple 
theta cycles according to the bump’s oscillation. We can calculate the phase by ‍θt =

(
t − t0

)
/T ‍, with ‍t0‍ 

referring to the beginning of the present theta cycle and T referring to the theta period. Denote the 
firing rate of the ith neuron at time t as ‍ri

(
xt, θt

)
‍, the probability heatmap is calculated by:

	﻿‍
p
(
x, θt

)
= C

Nc∑
i=1

θtri
(
x, θt

)
,
‍�

(52)

where 
‍
C = 1/

∑
t

∑Nc
i=1 θtri

(
x, θt

)
‍
 is the normalization factor.
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Spike generation from the firing rate
To understand phase shift based on spiking time rather than the peak firing rate, we convert the 
firing rate into spike trains according to the Poisson statistics (note that our analysis is rate-based, but 
converting to spike-based does not change the underlying mechanism). For the ith place cell which 
encodes position ‍xi‍ on the linear track, the number of spikes ‍ni‍ it generates within a time interval ‍∆t‍ 
satisfies a Poisson distribution, which is expressed as:

	﻿‍
P
(
ni|z

)
=

[
fi
(
z
)
∆t

]ni

ni!
e−fi

(
z
)
∆t,

‍�
(53)

where ‍z‍ is the animal’s location, and ‍fi
(
z
)
‍ is the tuning function of cell i, which is given by:

	﻿‍
fi
(
z
)

= Arexp

[
−
(
xi − z

)2

2a2

]
,
‍�

(54)

where ‍Ar‍ denotes the amplitude of the neural activity bump and a the range of recurrent interaction.
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Appendix 1
1 The network model
We consider a CANN, in which neurons are uniformly distributed in a 1D environment, mimicking 
place cells rearranged according to the locations of their firing fields on the linear track. Neurons in 
the CANN are connected with each other recurrently. Denote ‍U

(
x, t

)
‍ the synaptic input received by 

neurons at location ‍x‍, with ‍x ∈
(
−∞,∞

)
‍, and ‍r

(
x, t

)
‍ the corresponding firing rate. The dynamics of 

the network are written as:

	﻿‍
τ

dU(x, t)
dt

= −U(x, t) + ρ

ˆ ∞

−∞
J(x, x′)r(x′, t)dx′ − V(x, t) + Iext(x, t),

‍�
(A1)

	﻿‍
τv

dV
(
x, t

)
dt

= −V
(
x, t

)
+ mU

(
x, t

)
,
‍�

(A2)

	﻿‍
r(x, t) = U(x, t)2

1 + kρ
´∞
−∞ U(x′, t) dx′

,
‍�

(A3)

where ‍τ ‍ is the time constant of ‍U
(
x, t

)
‍, ‍ρ‍ the neuron density, and ‍I

ext (x, t
)
‍ the external input. ‍J

(
x, x′

)
‍ 

represents the connection strength between neurons at ‍x‍ and ‍x′‍. ‍V
(
x, t

)
‍ representing the effect of 

firing rate adaptation on this neuron. ‍τv‍ is the time constant of ‍V
(
x, t

)
‍, and ‍m‍ controls the adaptation 

strength. The parameter ‍k‍ controls the amount of divisive normalization, reflecting the contribution 
of inhibitory neurons (not explicitly modeled) (Mitchell and Silver, 2003).

The connection profile between two neurons with firing fields at location ‍x‍ and ‍x′‍ is set as:

	﻿‍
J
(
x, x′

)
= J0

2πa
exp

[
−
(
x − x′

)2

2a2

]
,
‍�

(A4)

where the parameter ‍J0‍ controls the amount of recurrent connection strength and ‍a‍ represents the 
range of neuronal interactions. Notably, the recurrent connection between place cells is translation-
invariant, i.e., ‍J

(
x, x′

)
‍ is a function of ‍

(
x − x′

)
‍. This feature is crucial for the neutral stability of 

continuous attractor networks.
It is known that when there is no external input or firing rate adaptation (‍m = 0‍,‍Iext = 0‍), the CANN 

can hold a continuous family of Gaussian-shaped stationary states (Fung et al., 2010; Fung et al., 
2012), called bump activities, as long as ‍k‍ is smaller than a critical value 

‍
kc = ρJ2

0/
(

8
√

2πa
)
‍
. These 

bump states are expressed as 
‍
Ū
(
x
)

= AUexp
[
−
(
x − z

)2 /
(

4a2
)]

‍
, with ‍z‍ a free parameter representing 

the bump center and ‍AU‍ a constant representing the bump amplitude.
In general, although the state of the network is affected by external inputs and adaptation, the 

network bump can still be well approximated with Gaussian-like profiles (Mi et al., 2014). Therefore, 
we assume the state of the network to be of the following Gaussian form:

	﻿‍
U
(
x, t

)
= Auexp

{
−
[
x − z

(
t
)]2

4a2

}
,
‍�

(A5)

	﻿‍
V
(
x, t

)
= Avexp

{
−
[
x − z

(
t
)

+ d
(
t
)]2

4a2

}
,
‍�

(A6)

	﻿‍
r̄
(
x, t

)
= Arexp

{
−
[
x − z

(
t
)]2

2a2

}
,
‍�

(A7)

where ‍Au‍, ‍Av‍, and ‍Ar‍ represent the amplitudes of these Gaussian bumps. ‍z
(
t
)
‍ is the center of 

‍U
(
x, t

)
‍ and ‍r

(
x, t

)
‍. ‍d

(
t
)
‍ denotes the distance between ‍U

(
x, t

)
‍ and ‍V

(
x, t

)
‍, and ‍d

(
t
)

> 0‍ always holds, 
as the firing rate adaptation is a much slower dynamics lagging behind the neural dynamics. Here, 
we assume that the bump heights, i.e., ‍Au‍, ‍Av‍, and ‍Ar‍, are all constants during the evolution of the 
neural dynamics.

To solve the specific solution of the network state, we need to substitute the general solution 
given by Equations A5–A7 into the network dynamics Equations A1–A3, we obtain:

https://doi.org/10.7554/eLife.87055
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	﻿‍
Ar = A2

u

1 + kρ
√

2πaA2
u

,
‍�

(A8)

	﻿‍

τ

[
Au

x − z
2a2

dz
dt

+ dAu
dt

]
N
(
z, 2a

)
=
(
−Au + ρJ0√

2
Ar

)
N
(
z, 2a

)

−AvN
(
z − d, 2a

)
+ Iext (x, t

)
,‍�

(A9)

	﻿‍

τv

[
Av

x − z + d
2a2

d
(
z − d

)
dt

+ dAv

dt

]
N
(
z − d, 2a

)
= −AvN

(
z − d, 2a

)

+mAuN
(
z, 2a

)
, ‍�

(A10)

where 
‍
N

(
z, 2a

)
= exp

{
−
[
x − z

]2 /4a2
}

‍
. Given ‍I

ext (x, t
)

= 0‍, we can solve Equations A8–A10 to get 

the solution of the network state. An important property of a CANN is that its dynamics is dominated 
by a few motion modes, as a consequence of the translation-invariant connections between neurons. 
We can therefore simplify the network dynamics significantly by projecting the network dynamics 
onto its dominating motion modes (Fung et al., 2010) (by projecting a function ‍f

(
x
)
‍ onto a mode 

‍un
(
x
)
‍, it means to compute ‍

´
x f

(
x
)

un
(
x
)

dx‍). Typically, projecting onto the first two motion modes is 
adequate (see next section).

For the bump ‍U
(
x, t

)
‍, the first two motion modes are:

	﻿‍
u0

(
x, t

)
= exp

{
−
[
x − z

(
t
)]2

4a2

}
,
‍�

(A11)

	﻿‍
u1

(
x, t

)
=
[
x − z

(
t
)]

exp

{
−
[
x − z

(
t
)]2

4a2

}
.
‍�

(A12)

For the bump ‍V
(
x, t

)
‍, the first two motion modes are:

	﻿‍
v0

(
x, t

)
= exp

{
−
[
x − z

(
t
)

+ d
(
t
)]2

4a2

}
,
‍�

(A13)

	﻿‍
v1

(
x, t

)
=
[
x − z

(
t
)

+ d
(
t
)]

exp

{
−
[
x − z

(
t
)

+ d
(
t
)]2

4a2

}
.
‍�

(A14)

2 Deriving the network state when the external input does not exist 
(‍Iext = 0‍)
2.1 Static bump state of the network
We first analyze the condition for the network holding a static bump as its stationary state. In this 
case, the positions of bumps ‍U ‍ and ‍V ‍ remain unchanged, i.e., ‍dz/dt = 0‍, and the discrepancy between 
them is zero, i.e., ‍d = 0‍. Thus, Equations A9 and A10 can be simplified as:

	﻿‍
τ

dAu
dt

= −Au + ρJ0√
2

Ar − Av,
‍�

(A15)

	﻿‍
τv

dAv

dt
= −Av + mAu.

‍�
(A16)

Combining them with Equation A8, we obtain the solution of the steady state of the network as:

	﻿‍ Av = mAu,‍� (A17)

	﻿‍
Ar =

√
2
(
1 + m

)
ρJ0

Au,
‍� (A18)

https://doi.org/10.7554/eLife.87055
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	﻿‍
Au =

ρJ0 +
√

ρ2J2
0 − 8

√
2π

(
1 + m

)2 kρa
4
√
π
(
1 + m

)
kρa

.
‍�

(A19)

To analyze the stability of this solution, we calculate the Jacobian matrix at this state, which is 
given by:

	﻿‍

M =




1
τ


−1 +

√
2ρJ0Au(

1 +
√

2πkρaA2
u

)2


 − 1

τ

m
τv

− 1
τv




‍�

(A20)

Denote the eigenvalues of the Jacobian matrix as ‍λ1‍ and ‍λ2‍. Therefore, the condition for the 
solution to be stable is that both eigenvalues are negative, which gives

	﻿‍

λ1 + λ2 = 1
2


−1 +

√
2AuJ0ρ(

1 +
√

2πkρaA2
u

)2 − τ

τv


 < 0,

‍�

(A21)

	﻿‍

λ1λ2 = τ

τv


m + 1 −

√
2AuJ0ρ(

1 +
√

2πkρaA2
u

)2


 > 0.

‍�

(A22)

The above inequalities are satisfied when,

	﻿‍
0 < k < kc1 =

ρJ2
0

(
1 + τ

τv

)(
1 + 2m − τ

τv

)

8
√

2πa
(
1 + m

)4 ,
‍�

(A23)

	﻿‍
0 < k < kc2 =

ρJ2
0

8
√

2πa
(
1 + m

)2 .
‍�

(A24)

It is easy to check that ‍kc2 < kc1‍, so the condition for the network to hold static bumps as its steady 
state is ‍0 < k < kc2‍.

2.2 Traveling wave state of the network
We further analyze the condition for the network holding a continuously moving bump (traveling 
wave) as its steady state. In this state, the bump moves at a constant speed, and the center position 
is expressed as:

	﻿‍ z
(
t
)

= vintt,‍� (A25)

where ‍vint‍ is called the intrinsic speed of the bump activity. Since the bump height is roughly 
unchanged and the discrepancy ‍d‍ is a constant, Equations A9 and A10 can be simplified as:

	﻿‍
τ
(

Au
x − z
2a2 vint

)
N
(
z, 2a

)
=
(
−Au + ρJ0√

2
Ar

)
N
(
z, 2a

)
− AvN

(
z − d, 2a

)
,
‍�

(A26)

	﻿‍
τv

(
Av

x − z + d
2a2 vint

)
N

(
z − d, 2a

)
= −AvN

(
z − d, 2a

)
+ mAuN

(
z, 2a

)
.
‍�

(A27)

In order to obtain the solution of variables of ‍Au, Av, Ar, d‍, and ‍vint‍, we reduce the dimensionality 
of the network dynamics by projecting Equations A26 and A27 onto the dominant motion modes 

‍u0
(
x
)

, u1
(
x
)

,v0
(
x
)

,v1
(
x
)
‍. First, projecting both sides of Equation A26 onto the motion mode 

‍u0
(
x
)
‍ (expressed in Equation A11), we obtain:

https://doi.org/10.7554/eLife.87055
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	﻿‍

Left − side = 0,

Right − side =
(
−Au + ρJ0√

2
Ar

)√
2πa − Avexp

(
− d2

8a2

)
√

2πa.
‍�

Equating both sides, we have

	﻿‍
−Au + ρJ0√

2
Ar − Avexp

(
− d2

8a2

)
= 0.

‍�
(A28)

Similarly, projecting Equation A26 onto the motion mode ‍u1
(
x
)
‍ (expressed in Equation A12) and 

equating both sides, we obtain:

	﻿‍
τAuvint = dAvexp

(
− d2

8a2

)
.
‍�

(A29)

Again, projecting both sides of Equation A27 onto the motion modes ‍u0
(
x
)
‍ and ‍u1

(
x
)
‍, 

respectively, and equating both sides, we obtain:

	﻿‍

d
4a2 τvAvexp

(
− d2

8a2

)
vint = −Avexp

(
− d2

8a2

)
+ mAu,

‍�
(A30)

	﻿‍
τv

(
1 − d2

4a2

)
vint = d.

‍�
(A31)

Combining Equation A8 and Equations A28–A31, we obtain the values of ‍Au, Av, Ar, d‍, and ‍vint‍ 
in the traveling wave state as follows:

	﻿‍

Au =
ρJ0 +

√
ρ2J2

0 − 8
√

2πkρa
(

1 +
√

mτ

τv

)2

4
√
πkρa
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√
mτ

τv

) ,

‍�

(A32)
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ρJ0 +

√
ρ2J2

0 − 8
√

2πkρa
(

1 +
√

mτ

τv

)2

2
√

2πkρ2aJ0
,
‍�

(A33)

	﻿‍

Ar =
√

mτ

τv
exp




1 −
√

τ

mτv

2



ρJ0 +

√
ρ2J2

0 − 8
√

2πkρa
(

1 +
√

mτ

τv

)2

4
√
πkρa

(
1 +

√
mτ

τv

) ,

‍�

(A34)

	﻿‍
d = 2a

√
1 −

√
τ

mτv
,
‍�

(A35)

	﻿‍
vint = 2a

τv

√
mτv
τ

−
√

mτv
τ

.
‍�

(A36)

It is straightforward to check from Equation A36 that, to obtain a traveling wave state, ‍vint‍ should 
be a real positive value. This gives the condition that

	﻿‍
m > τ

τv
.
‍� (A37)

Equations A24 and A37 give the phase diagram of the network state when external input does 
not exist, as shown in Appendix 1—figure 2g in the main text.
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3 Deriving the oscillatory tracking state of the network when the 
external input is applied (‍Iext ̸= 0‍)
The external input is given by:

	﻿‍
Iext = αexp

[
−
(
x − vextt

)2

4a2

]
,
‍�

(A38)

where ‍α‍ is the input strength and ‍vext‍ is the speed of the external input, mimicking the moving speed 
of the artificial animal.

The network state is mainly affected by two competing factors: one is the intrinsic mobility of the 
network originated from the firing rate adaptation, which drives the bump to move spontaneously 
(see section Traveling wave state of the network above); the other is the extrinsic mobility driven 
by the external input, which drives the bump to move at the same speed of ‍vext‍. The competition 
between these two factors leads to three tracking states of the network: traveling wave, oscillatory 
tracking, and smooth tracking. Among the three states, the traveling wave state and the smooth 
tracking state are similar to the two cases we described in the previous section. Here, we only focus 
on the analytical derivation of the oscillatory tracking state. By numerically simulating the attractor 
network, we find that the bump center position can be roughly expressed as a sinusoidal moving 
wave given by:

	﻿‍ z
(
t
)

= c0sin
(
ωt
)

+ d0 + vextt,‍� (A39)

where ‍c0‍ and ‍ω‍ represent the amplitude and frequency of the sinusoidal wave, respectively, and ‍d0‍ 
denotes the offset between the center of the activity bump and the center of the external input. 
Substituting the form of external input expressed in Equation A38 into Equations A9 and A10, we 
obtain:

	﻿‍

τ

(
Au

x − z
2a2

dz
dt

)
N
(
z, 2a

)
=
(
−Au + ρJ0√

2
Ar

)
N
(
z, 2a

)
− AvN

(
z − d, 2a

)

+αN
(
vextt, 2a

)
, ‍�

(A40)

	﻿‍
τv

(
Av

x − z + d
2a2

d
(
z − d

)
dt

)
N
(
z − d, 2a

)
= −AvN

(
z − d, 2a

)
+ mAuN

(
z, 2a

)
.
‍�

(A41)

Again, to get the solution of variables of ‍Au, Av, Ar, c0,ω, d0‍ we reduce the dimensionality of 
the network dynamics by projecting Equations A40 and A41 onto the dominant motion modes 

‍u0
(
x
)

, u1
(
x
)

,v0
(
x
)

,v1
(
x
)
‍. Projecting Equation A40 onto ‍u0‍ and ‍u1‍, respectively, gives

	﻿‍
−Au + ρJ0√

2
Ar + αexp

(
− s2

8a2

)
= Avexp

(
− d2

8a2

)
,
‍�

(A42)

	﻿‍
dAvexp

(
− d2

8a2

)
− αsexp

(
− s2

8a2

)
= τAu

dz
dt

,
‍�

(A43)

where ‍s
(
t
)

= c0sin
(
ωt
)

+ d0‍ denotes the offset between ‍U
(
x, t

)
‍ and ‍Iext

(
x, t

)
‍. For clearance, we 

denote 
‍
Atemp = Avexp

(
−d2/8a2

)
‍
 hereafter.

We first solve the dynamics of the distance ‍d
(
t
)
‍, i.e., the distance between ‍U

(
x, t

)
‍ and ‍V

(
x, t

)
‍. To 

do this, we substitute Equations A39 and A42 into Equation A43 and obtain:

	﻿‍
d
(
t
)

= 1
Atemp

[
τAu

(
v + c0ωcosωt

)
+ αsexp

(
− s2

8a2

)]
.
‍�

(A44)

Since ‍s ≪ 2a‍ generally holds, we have 
‍
exp

(
−s2/8a2

)
≈ 1

‍
. With this approximation, the equation 

above can be rewritten as:

	﻿‍ d
(
t
)

= A0sin
(
ωt + β

)
+ B0,‍� (A45)
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where the parameters are solved as:

	﻿‍
β = arccos

(
α√

τ2A2
uω2 + α2

)
,
‍�

(A46)

	﻿‍
A0 = c0

√
τ2A2

uω2 + α2

Atemp
,
‍�

(A47)

	﻿‍
B0 = τAuv + αd0

Atemp
.
‍�

(A48)

Again, projecting Equation A41 onto ‍v0‍ and ‍v1‍, respectively, gives

	﻿‍
Av = mAuexp

(
− d2

8a2

)
,
‍�

(A49)

	﻿‍
τvAv

[
dz

(
t
)

dt
−

dd
(
t
)

dt

]
= mAuexp

(
− d2

8a2

)
d
(
t
)

.
‍�

(A50)

To solve the expression of ‍Au‍, we substitute Equations A8 and A49 into Equations A42 and 
obtain:

	﻿‍
−Au + ρJ0√

2
A2

u

1 +
√

2πakρA2
u

+ αexp

(
− s2

8a2

)
= mAuexp

(
− d2

4a2

)
.
‍�

(A51)

Since ‍s ≪ 2a‍ and ‍d ≪ 2a‍, the approximations of 
‍
exp

(
−s2/8a2

)
≈ 1

‍
 and 

‍
exp

(
−d2/4a2

)
≈ 1

‍
 hold, 

and the above equation can be simplified as:

	﻿‍

(
m + 1

)
Au −

ρJ0√
2

A2
u

1 +
√

2πakρA2
u
− α = 0.

‍�
(A52)

We can rearrange Equation A52 into a general cubic equation of ‍Au‍, which is written as:

	﻿‍ a3A3
u + a2A2

u + a1Au + a0 = 0,‍� (A53)

	﻿‍ a3 =
√

2π
(
m + 1

)
akρ,‍� (A54)

	﻿‍
a2 = −

√
2πakρα− ρJ0√

2
,
‍�

(A55)

	﻿‍ a1 = m + 1,‍� (A56)

	﻿‍ a0 = −α,‍� (A57)

It’s easy to check that Equation A53 only has one real solution, which is:

	﻿‍
Au =

[
−q

2
+
√(q

2

)2
+
(p

3

)3
]1/3

+

[
−q

2
−

√(q
2

)2
+
(p

3

)3
]1/3

,
‍� (A58)

	﻿‍
q =

3a3a1 − a2
2

3a2
3

,
‍� (A59)

	﻿‍
p =

27a2
3a0 − 9a3a2a1 + 2a3

2
27a3

3
.
‍� (A60)
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The analytical solution of ‍Au‍ given by Equations A58–A60 is very complicated. However, by 
numerically simulating the network, we find that ‍

√
2πakρA2

u ≫ 1‍ can be hold when the network is at 

the oscillatory tracking state. This gives 
‍
A2

u/
(

1 +
√

2πakρA2
u

)
≈ 1/

√
2πakρ

‍
. Therefore, we can simplify 

the expression of ‍Au‍ to

	﻿‍
Au = J0 + 2

√
πakα

2
√
πak

(
1 + m

) .
‍�

(A61)

To solve ‍ω, d0‍, and ‍c0‍, we further substitute Equation A49 into Equation A50 and obtain:

	﻿‍
τv

dz
(
t
)

dt
= d

(
t
)

+ τv
dd

(
t
)

dt
.
‍�

(A62)

The above equation can be expanded by substituting Equations A39 and A45 into Equation 
A62 which gives

	﻿‍ τv
(
v + c0ωcosωt

)
= A0

[
sin

(
ωt + β

)
+ ωτvcos

(
ωt + β

)]
+ B0.‍�

Using the trigonometric transformation formula, we can rewrite the above equation as:

	﻿‍
τvv + τvc0ωsin

(
ωt + π

2

)
= A0

√
1 + ω2τ2

vsin
(
ωt + β + γ

)
+ B0,

‍�
(A63)

where ‍γ‍ is given by:

	﻿‍
γ = arccos

(
1√
τ2
vω2

)
.
‍�

(A64)

Equating two sides of Equation A63, we have:

	﻿‍ τvv = B0,‍� (A65)

	﻿‍
π

2
= β + γ,

‍� (A66)

	﻿‍ τvc0ω = A0

√
1 + ω2τ2

v .‍� (A67)

Now we combine the three equations given by Equations A65–A67 to get the solutions of ‍c0,ω‍, 
and ‍d0‍. Substituting Equation A48 into Equation A65, we obtain:

	﻿‍
d0 =

τvvAtemp − τvAu
α

.
‍�

(A68)

Applying the cosine function to both sides of Equation A66, we obtain:

	﻿‍ cos
(
β + γ

)
= cosγcosβ − sinγsinβ = 0.‍� (A69)

Substituting Equations A46 and A64 into Equation A69, we have:

	﻿‍
ω2 = α

ττvAu
.
‍� (A70)

Combining Equation A70 with Equation A61, we obtain the expression for the oscillating 
frequency ‍ω‍, i.e.,

	﻿‍
ω =

√
2
√
παak

(
1 + m

)

ττv
(
J0 + 2

√
πakα

) .
‍� (A71)

Substituting Equations A47 and A70 into Equation A67, and taking square on both sides, we 
have:
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	﻿‍

(
τ2A2

uω
2 + α2

)

A2
temp

(
1 + ω2τ2

v

)
= τ2

vω
2.

‍�
(A72)

Solving the above equation for ‍Atemp‍, we get:

	﻿‍
Atemp = τAu + ατv

τv
.
‍�

(A73)

Substituting Equation A73 into Equation A68, we can get the expression for the average offset 

‍d0‍ between the bump center and the external input center, which is:

	﻿‍ d0 = τvv.‍� (A74)

Since 
‍
Atemp = mAuexp

[
−d

(
t
)2 /

(
4a2

)]
‍
 varies across time, we take the approximation

	﻿‍
Atemp = mAuexp

[
−d

(
t
)2/(4a2)

]
,
‍�

(A75)

with ‍d
(
t
)2

‍ the time-averaged value, which is calculated to be:

	﻿‍
d
(
t
)2 = 1

T

ˆ T

0
d2 (t

)
dt = ατv

2
(
τAu + ατv

) c2
0 + τ2

vv
2.

‍�
(A76)

Substituting Equations A73 and A76 into Equation A75, we obtain the expression for the 
oscillating amplitude ‍c0‍, i.e.,

	﻿‍
c0 =

√
2
(
τAu + ατv

)
ατv

[
4a2

(
ln τvmAu
τAu + ατv

)
− τ2

vv2
]

,
‍�

(A77)

Substituting Equation A73 into Equation A49 and utilizing the condition of 

‍
exp

(
−d2/8a2

)
=
√

Atemp/mAu ‍
, we obtain the expression for the bump height of ‍V

(
x, t

)
‍:

	﻿‍
Av =

√(
τAu + ατv

τv

)
mAu.

‍�
(A78)

Overall, combining Equations A8, A61, A71, A74, A77, and A78, we get the solutions of all 
variables in the oscillatory tracking state, which are expressed as:

	﻿‍
Au = J0 + 2

√
πakα

2
√
πak

(
1 + m

) ,
‍�

(A79)

	﻿‍
Ar = A2

u

1 +
√

2πakρA2
u

,
‍�

(A80)

	﻿‍
Av =

√(
τAu + ατv

τv

)
mAu,

‍�
(A81)

	﻿‍
c0 = Av

√
2

αmAu

[
8a2ln mAu

Av
− τ2

vv2
]

,
‍�

(A82)

	﻿‍ d0 = τvv,‍� (A83)

	﻿‍
ω =

√
α

ττvAu
.
‍� (A84)
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It is noteworthy that the theoretical solutions given by Equations A82–A84 exist only if the 
sweep amplitude ‍c0‍ given by Equation A82 is of real value. This gives the condition for the CANN 
to be in the oscillatory tracking state, which is:

	﻿‍
8a2ln mAu

Av
> τ2

vv
2.

‍�
(A85)

We carry out numerical simulations to verify our theoretical results, including the theoretical 
solutions of the mean offset ‍d0‍ given by Equation A83 (see Appendix 1—figure 2a–c) and the 
theoretical boundary that separates the smooth tracking state and the oscillatory tracking state 
given by Equation A85 (see Appendix 1—figure 2d). The results show that our theoretical analysis 
agrees well with the simulation results.

4 Oscillatory tracking in the 2D CANN – modeling theta sweeps in the 
open field environment
4.1 Model description
In the 2D CANN, neurons are uniformly distributed on a rectangular neuronal sheet arranged 
according to the locations of their firing fields. Denote ‍U

(
x, t

)
‍ as the synaptic input to the neuron at 

location ‍x‍, with ‍x =
(
x1, x2

)
‍ and ‍x1, x2 ∈

(
−∞,∞

)
‍, and ‍r

(
x, t

)
‍ as the corresponding firing rate. The 

dynamics of ‍U
(
x, t

)
‍ is determined by its own relaxation, the recurrent inputs from other neurons, and 

the firing rate adaptation, which is written as:

	﻿‍
τ
∂U

(
x, t

)
∂t

= −U
(
x, t

)
+ ρ

ˆ

x′
J
(
x, x′

)
r
(
x′, t

)
dx′ − V

(
x, t

)
+ σUξU

(
x, t

)
.
‍�

(A86)

Here, ‍τ ‍ is the time constant of synaptic current and ‍ρ‍ is the neuronal density. The recurrent connection 

is defined as:
‍
J
(
x, x′

)
= J0/

(
2πa2

)
exp

[
−∥x − x′∥2/

(
2a2

)]
‍
, with ‍∥x − x′∥2 =

(
x1 − x′1

)2 +
(
x2 − x′2

)2
‍ 

which is translation-invariant on the neuronal sheet (Appendix  1—figure 6a). The nonlinear 
relationship between the firing rate ‍r

(
x, t

)
‍ and the synaptic input ‍U

(
x, t

)
‍ is implemented by the 

divisive normalization, which is:

	﻿‍
r
(
x, t

)
=

U2 (x, t
)

1 + kρ
´

x′ U2
(
x′, t

)
dx′

,
‍�

(A87)

where ‍k‍ controls the normalization strength. In the neural system, divisive normalization could be 
implemented by shunting inhibition (Mitchell and Silver, 2003). The term ‍V

(
x, t

)
‍ on the right-hand 

side of Equation A86 represents the effect of firing rate adaptation, with the dynamics written as:

	﻿‍
τv

∂V
(
x, t

)
∂t

= −V
(
x, t

)
+ mU

(
x, t

)
,
‍�

(A88)

where ‍τv‍ is the time constant, and ‍m‍ is the adaptation strength.

4.2 Theta sweeps in the 2D CANN
We study the network dynamics when an moving external input is applied to the network, which is 
written as:

	﻿‍
Iext = αexp

[
− ||x − vextt||2

4a2

]
,
‍�

(A89)

where ‍vext =
(
vx,vy

)
‍ represents the speed of the external input and ‍α‍ represents the input strength. 

We consider one simple case, where the external input is moving on a straight line along the x-axis, 
i.e., ‍vy = 0‍. We find that, similar to 1D CANN, when the input strength ‍α‍ and adaptation strength 
‍m‍ is set appropriately, the bump activity also oscillates around the moving input along the moving 
direction, which give rise to the alternative forward and reverse theta sequences along moving 
direction of the external input (Appendix 1—figure 6b). The heatmap of the phase shift of the 
probe neuron which is located at ‍x = 0, y = 0‍ is shown in Appendix 1—figure 6c.
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Appendix 1—figure 1. Sweep length is not bounded by the external input width. (a) The sweep length is 
positively but not linearly related with the external input width. (b) With fixed external input width, increasing the 
adaptation strength the sweep length can exceed the external input width. This figure relates to Figure 2 in the 
main text.
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Appendix 1—figure 2. Verifying theoretical results with numerical simulations. (a–c) Simulation results of the 
average offset ‍d0‍ as a function of ‍vext‍, ‍α‍, and ‍m‍, respectively. (d) The phase diagram of network states. The yellow 
area represents the traveling wave state, the green area represents the oscillatory tracking state, and the blue area 
represents the smooth tracking state. The white line represents the theoretical boundary given by Equation A85. 
The parameters used in simulations are: ‍k = 5‍, ‍J0 = 1‍, ‍a = 0.4‍, ‍N = 512‍, ‍τ = 3‍ ms, ‍τv = 144‍ ms, ‍ρ = 20.37‍. This 
figure relates to Figure 2 in the main text.
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Appendix 1—figure 3. Activity bump height as a function of the adaptation strength. (a) The ratio between 
the average bump height during forward window and the average bump height during backward window as 
function of the adaptation ‍m‍. When the adaptation strength is relatively small, the mean firing rate of place 
cells is approximately the same in the forward window as in the backward window. And the place cells exhibit 
bimodal cell properties. As the adaptation strength gets larger, the mean firing rates in the backward window 
gradually decrease and the place cells tend to exhibit firing properties more like unimodal cells. (b) The average 
bump height as a function of the adaptation strength ‍m‍. Our model predicts that the bimodal cells fire at higher 
frequency than unimodal cells which can be testable in future experiments. The parameters are: ‍α = 0.19‍, ‍k = 5‍, 

‍J0 = 1‍, ‍a = 0.4‍, ‍N = 512‍, ‍τ = 3 ms‍, ‍τv = 144 ms‍, ‍ρ = 20.37‍, ‍vext = 0.51 m/s‍. This figure relates to Figure 4 in 
the main text.
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Appendix 1—figure 4. Persistent phase shift with variable silencing periods. (a) Two examples of the 
persisting phase shift after transient silencing. Upper panel: The silencing duration is 60 ms. Upper panel: The 
silencing duration is 275 ms. (b) The phase interval before and after the silencing as a function of the duration 
of the silencing. The phase interval gradually increases with the silencing duration. The parameters are: 
‍α = 0.19‍,‍m = 3.23‍, ‍a = 0.4‍,‍k = 5‍,‍J0 = 1‍, ‍N = 512‍, ‍τ = 3 ms‍, ‍τv = 144 ms‍, ‍ρ = 20.37‍, ‍vext = 1 m/s‍. This figure 
relates to Figure 6 in the main text.
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Appendix 1—figure 5. Persistent bimodal phase shift after transient silencing. The parameters are: ‍α = 0.19‍, 
‍m = 3.03‍, ‍a = 0.4‍, ‍k = 5‍, ‍J0 = 1‍, ‍N = 512‍, ‍τ = 3 ms‍, ‍τv = 144 ms‍, ‍ρ = 20.37‍, ‍vext = 0.3 m/s‍. This figure relates 
to Figure 6 in the main text.
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Appendix 1—figure 6. Theta sweeps and theta phase shift in a two-dimensional (2D) continuous attractor neural 
network (CANN). (a) A demonstration of the 2D CANN. (b) The trajectory of the bump center and external input 
center when the input is moving along the x-axis in the 2D CANN. (c) Theta phase as a function of the normalized 
position of the animal in place field, averaged over all place cells that are placed on the x-axis. –1 represents 
that the animal just enters the place field, and 1 represents that the animal is about to leave the place field. 
The parameters are: ‍α = 0.2‍, ‍m = 4‍, ‍k = 6‍, ‍J0 = 1‍, ‍a = 0.3‍, ‍N = 16384‍, ‍τ = 3 ms‍, ‍τv = 150 ms‍, ‍ρ = 415.01‍, 

‍vext = 1m/s‍. This figure relates to Figure 2 in the main text.
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Appendix 1—figure 7. Theta oscillation of the population activities during the theta sweep state. This figure 
relates to Figure 4 in the main text.
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Appendix 1—figure 8. A-continuous attractor neural network (CANN) with heterogeneous connection strength 
generate oscillatory tracking to account for theta phase shift. (a) The synaptic connection strength profile of 
the neurons in the network. The blue lines represent the synaptic strengths of the neurons which turn out to be 
bimodal neurons, while the red lines represent the unimodal neurons. (b) The oscillatory tracking trajectory of the 
bump center. (c) The phase shift distribution of the bimodal cells. (d) The phase shift distribution of the unimodal 
cells. The variations of the connection strength is 0.1, the average value is 1. Other parameters are the same with 
Figure 3 and Figure 4 in the main text. This figure relates to Figure 4 in the main text.
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Appendix 1—figure 9. Oscillatory tracking behavior accounts for theta phase shift with ‍τ = 10 ms‍. (a) Oscillatory 
tracking behavior. (b) Bimodal phase shift of one example neuron. ‍τ = 10 ms, τv = 480 ms,α = 0.3, m = 6‍, Other 
parameters are set equal with the Figure 2 in the main text. This figure relates to Figure 2 in the main text.
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Appendix 1—figure 10. Spatiotemporal tracking dynamics when the adaptation strength is low (start from 0). 
(a) The tracking behavior when the adaptation strength ‍m = 0‍ (‍α = 0.02‍). The network bump can generate a 
bump to track the external input stimuli smoothly but with a constant lagging distance which is proportional to 
the time constants ‍τ ‍ and the external input speed ‍vext‍. (b) The tracking behavior when the adaptation strength 
‍m = 0.1‍ (‍α = 0.02‍). Thanks to the intrinsic mobility introduced by SFA, the network bump anticipatively track 
the external input stimuli with a contant leading distance which is proportional to the adaptation strength ‍m‍ and 
the external input speed ‍vext‍. (c) A phase diagram that summarizes the spatiotemporal patterns of the A-CANN 
tracking behavior. Other parameters are set equal with Figure 2 in the main text. This figure relates to Figure 2 in 
the main text.

Appendix 1—table 1. Commonly used parameter values in the simulation of the linear track 
environment.

Parameters Values

Number of place cells: ‍N ‍ 512

Time constant of neural firing: ‍τ ‍ 3 ms

Time constant of spike frequency adaptation: ‍τv‍ 144 ms

Neuron density: ‍ρ‍ ‍256/π‍

Recurrent connection range (Gaussian width): ‍a‍ 0.4 m

Width of external input (Gaussian width): ‍σ‍ 0.4 m

Recurrent connection strength: ‍J0‍ 0.2

Gain factor: ‍g‍ 5

Global inhibition strength: ‍k‍ 5

Moving speed of the external input: ‍vext‍ (m/s) 1.5

Time interval: ‍δt‍ 0.3 s

Simulation duration: ‍T ‍ 10 s

Appendix 1—table 2. Figure-specific parameter values for input strength ‍α‍ and adaptation strength 
‍m‍.

Figures/parameters ‍α‍ ‍m‍

An example of smooth tracking (Appendix 1—figure 2c) 0.19 0

An example of traveling wave (Appendix 1—figure 2d) 0 0.31

Intrinsic speed vs. adaptation strength (Appendix 1—figure 2e) 0 0:0.05:0.1

Phase diagram (Appendix 1—figure 2g) 0.05:0.001:0.16 0.9:0.01:1.8

Oscillatory tracking (bimodal) (Appendix 1—figure 4a, e, g) 0.19 3.02

Oscillatory tracking (unimodal) (Appendix 1—figure 4b, f, h) 0.19 3.125

Appendix 1—table 3 Continued on next page
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Appendix 1—table 3. Parameters values in the simulation of the T-maze environment.

Parameters Values

Number of cells central/left/right: ‍N1, N2, N3‍ 3000/1500/1500

Time constant of neural firing: ‍τ ‍ 3 ms

Time constant of spike frequency adaptation: ‍τv‍ 144 ms

Neuron density: ‍ρ‍ ‍
(
128/π

)2
‍

Recurrent connection range (Gaussian width): ‍a‍ 0.3

Recurrent connection strength: ‍J0‍ 1.25 ∗ 10-2

Gain factor: ‍g‍ 20

Global inhibition strength: ‍k‍ 1.25

Moving speed of the external input: ‍vext‍ (m/s) 1.5

Input strength: ‍α‍ 2

Adaptation strength: ‍m‍ 3.96

Time interval: ‍δt‍ 0.3 s

Simulation duration: ‍T ‍ 3.3 s

https://doi.org/10.7554/eLife.87055
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